Nav: Home

Menstruation in spaceflight: Options for astronauts

April 21, 2016

A new paper in the journal npj Microgravity explores the options for astronauts who want to prevent menstrual bleeding during their space missions. The paper, written by authors at King's College London and Baylor College of Medicine, reviews contraceptive devices available including those already used by military and aviation personnel, and calls for more research into the effect of hormone treatments on bone mineral loss in space.

Although full amenities are available should astronauts choose to menstruate in space, the practicalities of menstruating during pre-flight training or spaceflight can be challenging. For short duration missions, menstrual cycles can to be timed according to mission dates but for longer hauls, menstrual suppression is often preferred.

During long duration missions, astronauts have traditionally continuously taken the combined oral contraceptive (COC) pill to prevent menstrual flow. A three-year exploration class mission is predicted to require approximately 1,100 pills, whose packaging would add mass and disposal requirements for the flight.

Long acting reversible contraceptives (LARCs) such as IUDs and subdermal (beneath-the-skin) implants are also safe and reliable methods for this purpose but as of yet, have not been extensively used by astronauts. Opting for a LARC would however remove the upmass, packaging, waste and stability issues as a device could be inserted prior to a mission and replacement would not be required in-flight.

It is up to individuals to choose which method to use but LARCS appear to have a number of advantages for spaceflight, according to the paper's authors.

From an operational perspective, LARCs would not be expected to interfere with the ability of the astronaut to perform her tasks. There are no reports in the scientific literature suggesting high G loading experienced during launch or landing would damage a subdermal implant or shift the position of an IUD. However, consideration may need to be given as to whether the implant could rub or catch on specialist equipment or attire such as a diving suit or extra-vehicular activity suit.

The effect of hormone treatments on bone mineral density (BMD) is another issue for spaceflight, where astronauts lose bone at a much higher rate than on Earth. Previous studies have found a reduction in BMD with some contraception choices, namely the progestin only injection (DMPA), and whilst on earth these reductions are temporary, due to irreversible spaceflight related bone changes a treatment option which may impact BMD may not be advised. It is unknown whether taking the pill continuously would help protect against bone mineral loss. The authors call for further research to understand the impact of the COC in combination with microgravity, on bone mass density in women.

The paper concludes that astronauts should be provided with up-to-date, evidence-based information to make informed decisions about menstrual suppression if it is desired.

The uniqueness of spaceflight provides many challenges in conducting research, as the number of subjects required for clinical studies cannot be matched by the number of current active female astronauts. The authors suggest that combining pharmacological data from spaceflights with equivalent ground-based studies investigating menstrual suppression might provide the evidence required to trial LARCs during spaceflight.

Dr Varsha Jain, Visiting Researcher at the Centre of Human and Aerospace Physiological Sciences (CHAPS) at King's College London and NIHR Academic Clinical Fellow in Obstetrics and Gynaecology, said:

"Studies of women in the military have shown that many would like to suppress their menstrual flow during deployment, but only a proportion of them use the pill to do so; the majority of women surveyed also wanted more advice from the military to help them make the right choice.

"With more women going into space, we need to ensure they also have the most up-to-date information on reliable contraception and means of menstrual suppression. It is ultimately the woman's choice to suppress, but options should be available to her should she decide to do so."?

Dr Virginia Wotring, Assistant Professor at the Center for Space Medicine, Baylor College of Medicine, said:

"For any woman, choice of a contraceptive requires careful consideration of benefits and risks with respect to her lifestyle and needs. The spaceflight environment adds some extra complexity to the overall equation, and we want female crewmembers to be able to make well-informed choices for their missions. Because loss of bone mineral density is known to occur on spaceflight missions, we need more data regarding health effects, including bone health, with long-term use of hormone treatments not just for contraception (as most women use them), but also for the less-common use to suppress menses."
Notes to editors

For further information please contact Hannah Bransden, Press Officer at King's College London, on +44 (0)207 848 3840 or email

'Medically Induced Amenorrhea in Female Astronauts' by Jain and Wotring is published in the journal Microgravity on Thursday 21 April at 11:00 EST/16:00 BST. DOI 10.1038/npjmgrav.2016.8. Once live, the paper can be accessed here:

For more information about King's College London, please visit King's in Brief.

The National Institute for Health Research (NIHR) is funded by the Department of Health to improve the health and wealth of the nation through research. The NIHR is the research arm of the NHS. Since its establishment in April 2006, the NIHR has transformed research in the NHS. It has increased the volume of applied health research for the benefit of patients and the public, driven faster translation of basic science discoveries into tangible benefits for patients and the economy, and developed and supported the people who conduct and contribute to applied health research. The NIHR plays a key role in the Government's strategy for economic growth, attracting investment by the life-sciences industries through its world-class infrastructure for health research. Together, the NIHR people, programmes, centres of excellence and systems represent the most integrated health research system in the world. For further information, visit the NIHR website (

King's College London

Related Microgravity Articles:

Microgravity changes brain connectivity
An international team of Russian and Belgian researchers, including scientists from HSE University, has found out that space travel has a significant impact on the brain: they discovered that cosmonauts demonstrate changes in brain connectivity related to perception and movement.
Frozen sperm retains its viability in outer space conditions
Zillionaires like Amazon founder Jeff Bezos who see the 'colonization' of space as an answer to the Earth's ever threatened resources will be reassured to learn that human sperm retains its complete viability within the different gravitational conditions found in outer space.
In vivo data show effects of spaceflight microgravity on stem cells and tissue regeneration
A new review of data from 12 spaceflight experiments and simulated microgravity studies has shown that microgravity does not have a negative effect on stem-like cell-dependent tissue regeneration in newts, but in some tissues regeneration is faster and more robust.
Universal laws in impact dynamics of dust agglomerates under microgravity conditions
A collaboration between Nagoya University and TU Braunschweig finds evidence that when projectiles hit soft clumps of dust or hard clumps of loose glass beads, the scaling laws for energy dissipation and energy transfer are the same in each case.
'Dust up' on International Space Station hints at sources of structure
In a lab on Earth, electrically charged dust generally lines up either along the downward pull of gravity or across it.
More Microgravity News and Microgravity Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...