Nav: Home

Fungi must die

April 21, 2016

Research scientists from A.N. Belozersky Institute of Physico-Chemical Biology, the Lomonosov Moscow State University demonstrated how it is possible to suppress the resistance of fungi to antifungal drugs. The results of the work which can serve as a basis for the development of effective antifungal pharmaceuticals have been published in the journal FEMS Yeast Research.

Increasingly often scientists are finding strains of pathogenic fungi resistant to known antimycotics (antifungal drugs). 'There is quite a lot of different antifungals. The most common targets for them are ergosterol biosynthesis pathways. Ergosterol is localized in fungal plasma membrane and is similar to and performs the same functions as cholesterol in animal cells. Antifungals disrupt the biosynthesis of ergosterol, thereby suppressing the vital functions of the fungal cells while causing no significant harm to animal cells,' says Dmitry Knorre, a senior researcher at the Department of Molecular Energy of microorganisms, A.N. Belozersky Institute of Physico-Chemical Biology, the Lomonosov Moscow State, and the first author of the study. In addition, Dmitry Knorre is the author of a popular board game "Evolution".

Mutations leading to drug resistance allow pathogenic fungi to survive the action of antimycotics. Therefore fungal strain with such mutations are actively spreading, displacing less 'lucky' ones. Some mutations provide resistance just to a particular antifungal compound, whereas others protect from a whole range of the antimycotics. This effect is called "multidrug resistance". Usually, it is associated with excessive activation of the so-called ABC-transporters (ATP binding cassette). ABC-transporters are membrane enzymes pumping unwanted substances from the cells. Typically, the cellular transporters are working with a limited set of molecules, but some of them may protect the cells from large numbers of the compounds. The work describes an approach that allows to make the work of such ABC-transporters ineffective, to prevent their interference with the delivery of the antifungal agents into the cells.

The experiments were conducted on the cells of baker's yeast, a common fungal model object. Fluorescent dyes were added to the cells, along with fungi-toxic compounds (e.g., well known Clotrimazole). The dyes were alkyl-rhodamines, which can be easily tracked inside or outside the cells by measuring their fluorescence. This information is important as poorly soluble in water (hydrophobic) alkyl-rhodamine molecules are absorbed effectively by a cell membrane. At the same time, the absorbtion is opposed by ABC-transporters activity, which acts to extrude the xenobiotics from the cells. Pdr5p protein is one of such transporters, it has been shown by the scientists to play a key role in pumping out alkyl rhodamines from yeast cells. Scientists have tried to trace how the distribution of the dyes correlates with their ability to 'help' the drug to kill the fungus.

'Cell viability is determined as follows: if the cell suspension is supplemented with antimycotic, and then transferred to a solid media, then after a while the surviving cells form colonies that can be counted. As a result one can estimate the efficiency of used drug composition', says Dmitry Knorre.

The research team found that octyl-rhodamine was the most effective among the tested dyes - it outperformed all others in increasing the effects of the conventional antifungals. The scientists also explained how this happens. Alkyl rhodamines are actively ejected by the ABC-transporters from the cells, but, as these compounds are extremely hydrophobic, they are immediately captured again. As a result, ABC-transporters are deceived: they are fully engaged in pumping out alkylated rhodamines, so they have no capacity to pump such detrimental drugs as clotrimazole.

'In future, it will probably be possible to find a similar colorless compound for pharmacological purposes -- another alkylated penetrating cation,' says Dmitry Knorre.

Thus, in the course of work it was found how to force the fungi to "forget" about the medication and fight with "windmills" such as alkylated rhodamines instead. Further research in this area will certainly help to improve antifungal drug composition.
-end-


Lomonosov Moscow State University

Related Fungi Articles:

The two faces of rot fungi
Yogurt, beer, bread and specialties such as tasty blue cheeses or good wine -- special microorganisms and refining processes first produce the pleasant flavors and enticing aromas of many foodstuffs.
Growth mechanism of fungi decoded
Fungi grow with tubular cells extending by kilometers. Growth takes place exclusively at the tip.
Fungi awake bacteria from their slumber
When a soil dries out, this has a negative impact on the activity of soil bacteria.
Why communication is vital -- even among plants and fungi
A plant protein vital to chemical signalling between plants and fungi has been discovered, revealing more about the communication processes underlying symbiosis.
Biosynthetic secrets: How fungi make bioactive compounds
Biological engineers at Utah State University have successfully decoded and reprogrammed the biosynthetic machinery that produces a variety of natural compounds found in fungi.
Intestinal fungi worsen alcoholic liver disease
Liver cirrhosis is the 12th leading cause of mortality worldwide and approximately half of those deaths are due to alcohol abuse.
Fungi have enormous potential for new antibiotics
Fungi are a potential goldmine for the production of pharmaceuticals.
Novel virus breaks barriers between incompatible fungi
Scientists have identified a virus that can weaken the ability of a fungus to avoid pairing with other incompatible fungi, according to new research published in PLOS Pathogens.
How soil bacteria and fungi drive plant diversity
Two new studies shed light on how the composition of biota in soil drives plant diversity.
Underwater mushrooms: Curious lake fungi under every turned over stone
It is well known that fungi are essential in cycling carbon and nutrients, but aquatic fungi living in freshwater and marine ecosystems remain relatively unstudied.

Related Fungi Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#520 A Closer Look at Objectivism
This week we broach the topic of Objectivism. We'll be speaking with Keith Lockitch, senior fellow at the Ayn Rand Institute, about the philosophy of Objectivism as it's taught through Ayn Rand's writings. Then we'll speak with Denise Cummins, cognitive scientist, author and fellow at the Association for Psychological Science, about the impact of Objectivist ideology on society. Related links: This is what happens when you take Ayn Rand seriously Another Critic Who Doesn’t Care What Rand Thought or Why She Thought It, Only That She’s Wrong Quote is from "A Companion to Ayn Rand"