Nav: Home

Test aims to identify shale gas hazard in groundwater

April 21, 2016

A test has been developed to check for contamination of shallow groundwater from unconventional gas extraction techniques, such as fracking.

The development could help monitor the safety of shale gas and coal bed methane extraction, which has sparked debate because of the perceived risks of water contamination.

Methods used for shale gas extraction include hydraulic fracturing, commonly known as fracking, in which shale rocks below ground are split with high-pressure fluids to release gas that is recovered for fuel. Coal bed methane is extracted from deep coal seams by drilling into the coal to reduce the pressure and release gas.

The need for such a test was highlighted following allegations in the US that, following fracking operations, drinking water had become contaminated with large amounts of methane from deep below ground.

Groundwater often contains methane gas from shallow natural sources, which is harmless in small quantities. The researchers have developed a new way to fingerprint methane gas by identifying tiny traces of inactive natural gases, known as noble gases. These fingerprints vary depending on the origin and depth of the methane, and enable scientists to pinpoint its source.

The researchers, from the Universities of Edinburgh and Glasgow and the Scottish Universities Environmental Research Centre, have recorded these unique fingerprints in a number of exploratory shale gas and coal bed methane wells from around the UK. They are presenting these findings today (Friday) at the European Geosciences Union Conference in Vienna.

The fingerprint analysis can be used to determine the origin of methane at exploration sites. If levels of methane in groundwater are found to have changed following exploration activity, and the gas is traced to exploration or extraction activity, appropriate action can be taken.

Scientists developed the test by adapting a technique used for monitoring potential leaks of carbon dioxide gas from storage sites deep underground.

Dr Stuart Gilfillan, of the University of Edinburgh's School of GeoSciences, who led the project, said: "Creating this fingerprint test will enable gas exploration and extraction to be carried out responsibly and should help address public concerns over this technology. It is important that careful monitoring of methane levels in nearby waters is carried out when commercial extraction begins."
The project was supported by the Natural Environment Research Council, the Scottish Government and the University of Edinburgh.

University of Edinburgh

Related Methane Articles:

Microbial fuel cell converts methane to electricity
Transporting methane from gas wellheads to market provides multiple opportunities for this greenhouse gas to leak into the atmosphere.
Methane seeps in the Canadian high Arctic
Cretaceous climate warming led to a significant methane release from the seafloor, indicating potential for similar destabilization of gas hydrates under modern global warming.
Methane emissions from trees
A new study from the University of Delaware is one of the first in the world to show that tree trunks in upland forests actually emit methane rather than store it, representing a new, previously unaccounted source of this powerful greenhouse gas.
Oil production releases more methane than previously thought
Emissions of methane and ethane from oil production have been substantially higher than previously estimated, particularly before 2005.
Bursts of methane may have warmed early Mars
The presence of water on ancient Mars is a paradox.
New method for quantifying methane emissions from manure management
The EU Commision requires Denmark to reduce drastically emissions of greenhouse gases from agriculture.
New 3-D printed polymer can convert methane to methanol
Lawrence Livermore National Laboratory scientists have combined biology and 3-D printing to create the first reactor that can continuously produce methanol from methane at room temperature and pressure.
Arctic Ocean methane does not reach the atmosphere
250 methane flares release the climate gas methane from the seabed and into the Arctic Ocean.
Long-sought methane production mechanism identified
Researchers have identified the mechanism by which bacteria create methane, a potent greenhouse gas.
Retreat of the ice followed by millennia of methane release
Methane was seeping from the seafloor for thousands of years following the retreat of the Barents Sea ice sheet, shows a groundbreaking new study in Nature Communications.

Related Methane Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".