Nav: Home

Cool combination produces easier carbon bonds

April 21, 2016

By combining two century-old techniques in organic chemistry, Syuzanna Harutyunyan is able to make organic compounds with greater ease and precision. Such compounds are important for drug discovery and development. Harutyunyan's method is described in a paper that will be published by the journal Science on 22 April.

Almost 90 percent of known active pharmaceutical ingredients contain one or more 'heterocyclic aromatic rings', structures that contain atoms of at least two different elements. Most of these rings contain carbon and nitrogen atoms. 'Connecting two carbon atoms is a crucial step in synthesizing heterocycle-containing molecules', explains University of Groningen Associate Professor of Synthetic Organic Chemistry Syuzanna Harutyunyan.

But carbon-carbon bonds are notoriously difficult to make. An intermediary step is often required, but this makes the synthetic process longer and thus less efficient.

Furthermore, many pharmaceutically relevant heterocyclic molecules are chiral, which means they are present in two mirror-image versions. These versions often exhibit different biological activities. 'So we need a way to create the right chiral version as well', says Harutyunyan.

In the Science paper, Harutyunyan and her team describe just that: the efficient creation of carbon-carbon bonds with a high chiral selectivity for a wide range of nitrogen-containing heterocyclic molecules. For this breakthrough, Harutyunyan reverted to methods from the early twentieth century. Grignard reagents, originally developed by Victor Grignard, the first laureate of the Nobel Prize for Chemistry in 1912, are still an important tool in creating carbon-carbon bonds.

'But the heterocycles didn't respond much to the Grignard reagent, as they are very unreactive.' This is where another pioneer in organic chemistry and a contemporary of Grignard came to the rescue: Gilbert N. Lewis, the founder of the 'Lewis Acids/Bases Theory'. In this theory, a Lewis acid is any chemical species that attracts free electron pairs. By 'pulling' electrons away, the Lewis Acid can make molecules more reactive. Harutyunyan needed a very strong Lewis acid to activate the heterocyclic molecules.

Common sense says that you can't combine the Grignard reagent and the Lewis Acid, as the Grignard reagent is a base which will react with the acid, rendering both useless. However, in previous work, Harutyunyan had shown that this was not the case at low temperatures. 'I have spent much time studying the properties of these reagents, and that inspired me to apply them together at -78 degrees Celsius.' Combining the Grignard reagent and Lewis Acid at a low temperature activates a carbon atom adjacent to the heterocyclic ring and produces carbon-carbon bonds. Harutyunyan added a copper catalyst to provide chiral selectivity.

A temperature of -78 degrees Celsius is a bit low for pharmaceutical companies, and the first experiments in the Groningen lab used an ether-based solvent. 'That is too flammable for industry', says Harutyunyan. Modifications to the process resulted in a process that works at -50 degrees Celsius in the friendlier toluene.

Pharmaceutical companies have expressed an interest in Harutyunyan's process. 'For drug discovery and development, you need to make variants of lead compounds. This process makes it much easier to do so.' Meanwhile, the team is studying exactly how the Lewis Acid and the Grignard reagent work. 'I'm a bit of a mechanistic buff. Only by finding out exactly how things work, can you improve them.' Harutyunyan hopes to bring the reaction temperature up to -40 degrees or higher. 'Industry is comfortable with that sort of temperature. But my main driver is that I want to understand the process, as something quite special happens.'
-end-
Reference: R.P. Jumde; F. Lanza; M.J. Veenstra; S.R. Harutyunyan: Catalytic asymmetric addition of Grignard reagents to alkenyl-substituted aromatic N-heterocycles. Science, 22 April 2016, DOI 10.1126/science.aaf1983

Group web page: http://www.sr-harutyunyan.com

University of Groningen

Related Carbon Articles:

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.
How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.
New route to carbon-neutral fuels from carbon dioxide discovered by Stanford-DTU team
A new way to convert carbon dioxide into the building block for sustainable liquid fuels was very efficient in tests and did not have the reaction that destroys the conventional device.
How much carbon the land can stomach with more carbon dioxide in the air
Researchers from 28 institutions in nine countries succeeded in quantifying carbon dioxide fertilization for the past five decades, using simulations from 12 terrestrial ecosystem models and observations from seven field carbon dioxide enrichment experiments.
'Charismatic carbon'
According to the Intergovernmental Panel on Climate Change (IPCC), addressing carbon emissions from our food sector is absolutely essential to combatting climate change.
Extreme wildfires threaten to turn boreal forests from carbon sinks to carbon sources
A research team investigated the impact of extreme fires on previously intact carbon stores by studying the soil and vegetation of the boreal forest and how they changed after a record-setting fire season in the Northwest Territories in 2014.
Can we still have fun if the UK goes carbon neutral?
Will Britain going carbon neutral mean no more fun? Experts from the University of Surrey have urged local policy makers to put in place infrastructure that will enable people to enjoy recreation and leisure while keeping their carbon footprint down.
Could there be life without carbon? (video)
One element is the backbone of all forms of life we've ever discovered on Earth: carbon.
Biodiversity and carbon: perfect together
Biodiversity conservation is often considered to be a co-benefit of protecting carbon sinks such as intact forests to help mitigate climate change.
Discovery of microbial activity in carbon sinking as a gatekeeper of Earth's deep carbon
Carbon is transported from Earth's surface to the mantle where the oceanic crust subducts beneath continents.
More Carbon News and Carbon Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.