Nav: Home

VCU Massey researchers uncover process that drives prostate cancer metastasis

April 21, 2016

Researchers at VCU Massey Cancer Center have uncovered a novel function of the gene PLK1 (polo-like kinase 1) that helps prostate cancer cells metastasize (spread) to other parts of the body. This mechanism highlights new potential targets for cancer therapies and challenges the previous understanding of PLK1's role in cancer growth and progression.

Recently published in the journal eLife and featured in a poster session at this year's American Association for Cancer Research (AACR) annual meeting, preclinical experiments show for the first time that PLK1 promotes the migration of prostate cancer cells by setting in motion a process that induces what is known as the epithelial-to-mesenchymal transition (EMT). The EMT is a biological process wherein epithelial cells (cells that line the cavities and surfaces of blood vessels and organs) become mesenchymal (skeletal) stem cells that can move throughout the body and differentiate into a variety of cell types.

"We challenged a current dogma in the field that emphasized PLK1's role in mitosis (cell division) as a primary mechanism for cancer growth," says Zheng Fu, Ph.D., lead investigator on the study, member of the Cancer Molecular Genetics research program at VCU Massey Cancer Center and assistant professor in the Department of Human and Molecular Genetics at the VCU School of Medicine. "We showed that PLK1 drives migration of normal prostate epithelial and prostate cancer cells through an entirely different process."

In preclinical experiments using human prostate cancer cell lines, Fu's team showed that increased PLK1 expression activated an oncogene known as c-RAF, which has previously been shown to play a role in regulating cell growth and division. However, c-RAF has also been shown to activate signaling through the mitogen-activated protein kinase (MAPK) pathway. MAPK regulates cell functions, including proliferation, gene expression, differentiation, cell division and a form of cell suicide known as apoptosis. The team demonstrated that this enhanced MAPK signaling was responsible for inducing the EMT and stimulating metastasis of prostate cancer cells.

"Our findings could significantly impact the development of PLK1 inhibitors for the treatment of advanced prostate cancer," says Fu. "Furthermore, the findings may extend to other cancers because previous research has shown a link between enhanced PLK1 expression and invasiveness of colorectal, breast and thyroid tumors."

Fu plans to further explore the link between PLK1 and MAPK signaling in prostate cancer patients and determine whether PLK1-induced EMT contributes to other cancer-promoting processes that go beyond cell migration and metastasis.
-end-
Fu collaborated on this research with Andrei I. Ivanov, Ph.D., member of the Cancer Molecular Genetics research program at Massey and associate professor in the Department of Human and Molecular Genetics at the VCU School of Medicine and Paul B. Fisher, M.Ph., Ph.D., Thelma Newmeyer Corman Endowed Chair in Cancer Research and member of the Cancer Molecular Genetics program at VCU Massey Cancer Center, chairman of VCU's Department of Human and Molecular Genetics and director of the VCU Institute of Molecular Medicine.

This research was supported by American Cancer Society (ACS) grant 127626-RSG-15-005-01-CCG and an ACS institutional grant, National Institutes of Health (NIH) grants R01 CA191002 and P50 CA058236, and, in part, by funding from VCU Massey Cancer Center's NIH-NCI Cancer Center Support Grant P30 CA016059.

The full manuscript of this study is available online at: https://elifesciences.org/content/5/e10734v1

Virginia Commonwealth University

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.