Nav: Home

New insights in how blood vessels increase their size

April 21, 2016

A new study from the group of Holger Gerhardt (VIB/KU Leuven/Cancer Research UK/ MDC/BIH Berlin) in collaboration with Katie Bentley's Lab (Cancer Research UK/BIDMC-Harvard Medical School) addresses a long standing question in the wider field of developmental biology and tissue patterning in general, and in the vascular biology field in particular: 'What are the fundamental mechanisms controlling size and shape of tubular organ systems'. Whereas the most obvious way to grow a tube in size would be to add more building blocks (by proliferating cells) to enlarge its circumference, or to increase the size of the building blocks (the cells, hypertrophy), an alternative way would be to rearrange existing building blocks. Benedetta Ubezio, Raquel Blanco and colleagues under the direction of Holger Gerhardt and Katie Bentley now show that cell rearrangement is the way blood vessels switch from making new branches to increasing the size of a branch. The researchers also found that this switch is triggered by synchronization of cells under the influence of increasing levels of the growth factor VEGFA.

Holger Gerhardt (VIB/KU Leuven/Cancer Research UK/ MDC/BIH Berlin): "This mechanism also drives vessel enlargement in disease models including a model for diabetic retinopathy and cancer. These insights might lead to new ways of looking at VEGF treatments for cancer."

Cells move in groups

The mechanism of synchronization is Notch signaling, a cell-cell communication pathway that is used by most cells in all organisms, but in many different ways. The present work is the first to directly show that endothelial cells undergo dynamic fluctuations in the activity of this pathway within single cells, and that cell-cell signaling, the strength of which increases when there is more VEGFA, leads to synchronization of the "phase" of these fluctuations.

Katie Bentley (Cancer Research UK/BIDMC-Harvard Medical School): "As a consequence, the cells behave as a collective, moving in the same direction together, rather than moving in different directions as individuals. Branching requires neighboring cells to be "out of phase" in their Notch activity, whereas diameter increase is achieved by clustered movement 'in phase'."

A finding with broad implications

On the one hand, this means that when trying to understand mechanisms of tissue patterning, we need to understand not only what signals (genes, molecules etc) are present and used between the cells and their environment, but also how they change in amplitude and duration over time, within individual cells and within collectives of cells.

Katie Bentley (Cancer Research UK/BIDMC-Harvard Medical School): "This study emphasizes the need to search for mechanisms and tissue factors that alter the dynamics of core signaling pathways, and thus opens our eyes to new possible "temporal dynamic" modifiers in disease that can either explain pathology or open up new targets for unexpected treatments. "

Holger Gerhardt (VIB/KU Leuven/Cancer Research UK/ MDC/BIH Berlin): "From a wider methodology perspective it is clear that this work would not have been possible without implementing predictive computational modeling to guide and refine the experimental approaches and analysis. The iteration between modeling and experimentation is what gave rise to the first synchronization hypothesis and ultimately allowed us to ask the right question and perform the key experiments. As such, it is another example of the power of collaborative interdisciplinary work that will increasingly become necessary to tackle the most challenging questions in science and society."

Katie Bentley: "Untangling the complex dynamics of biological pathways in health or disease is almost impossible to do in ones' head. Computer Simulations are an easy way to watch the process unfold in front of you to identify new lines of enquiry. It was electrifying to see those first unexpected synchronized fluctations and expanding vessels in our high VEGF simulations, and after the dedication of a team of biologists over many years, performing, sometimes gruelingly long experiments! We can see that putting model predictions to the test, a feat still rare even with growing computational studies, can truly lead biology in new directions."

Holger Gerhardt (VIB/KU Leuven/Cancer Research UK/ MDC/BIH Berlin): "The ability to study fluctuations of gene expression live is fascinating, but requires complicated gene editing and transgenic approaches. Whilst this worked OK in the case of our embryonic stem cell derived cultures, the fact that dynamic signals don't accumulate made it very hard to actually detect the low level signals in the tissue in vivo. We will need better, brighter reporters, whilst maintaining their ability to degrade rapidly, in order to watch this behavior unfold in real time in living organisms. This is one aspect we are working on now."

Questions for the future....

One area of intense research that is related to this finding is the integration of chemical signals or cell-cell communication with physical signals. Blood vessels are under constant strain and stretch, both by blood pressure and blood flow.

Holger Gerhardt (VIB/KU Leuven/Cancer Research UK/ MDC/BIH Berlin): "Although we know that these effects play an important role in changing vessel size in adaptation to changing flow conditions, the mechanisms are poorly understood. We will now need to understand how the VEGFA-Dll4-Notch pathway and dynamic behavior of it integrate or intersect with signals that derive from blood flow and its physical properties."
-end-


VIB (the Flanders Institute for Biotechnology)

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.