Nav: Home

AI to make dentists' work easier

April 21, 2020

In order to plan a dental implant operation and the implant size and position, dentists need to know the exact location of the mandibular canal, a canal located in both sides of the lower jaw that contains the alveolar nerve.

The lower jaw is an anatomically complex structure and medical experts use X-ray and computer tomography (CT) models to detect and diagnose such structures. Typically, dentists and radiologists define the location of the mandibular canals manually from the X-ray or CT scans, which makes the task laborious and time-consuming. That is why an automatized way to do this could make their work and placement of dental implants much easier.

To bring a solution to this problem, researchers at the Finnish Center for Artificial Intelligence FCAI, Tampere University Hospital, Planmeca and the Alan Turing Institute developed a new model that accurately and automatically shows the exact location of mandibular canals. The model is based on training and using deep neural networks. The researchers trained the model by using a dataset consisting of 3D cone beam CT (CBCT) scans.

The model is based on a fully convolutional architecture, which makes it as fast and data-efficient as possible. Based on the research results, this type of a deep learning model can localise the mandibular canals highly accurately. It surpasses the statistical shape models, which have thus far been the best, automatized method to localise the mandibular canals.

In simple cases - when the patient does not have any special conditions, such as osteoporosis - the model is as accurate as a human specialist. Most patients that visit a dentist fall into this category. 'In more complex cases, one may need to adjust the estimate, so we are not yet talking about a fully stand-alone system,' says Joel Jaskari, Doctoral Candidate and the first author of the research paper.

Using Artificial Intelligence has another clear advantage, namely the fact that the machine performs the job equally fast and accurately every time. 'The aim of this research work is not, however, to replace radiologists but to make their job faster and more efficient so that they will have time to focus on the most complex cases,' adds Professor Kimmo Kaski.

Planmeca, a Finnish company developing, manufacturing and marketing dental equipment, 2D and 3D imaging equipment and software, collaborates with FCAI. The company is currently integrating the presented model into its dedicated software, to be used with Planmeca 3D tomography equipment.

The research results were recently published in the prestigious publication series Scientific Reports. Link to the research article: https://www.nature.com/articles/s41598-020-62321-3
-end-


Aalto University

Related Artificial Intelligence Articles:

A hidden history of artificial intelligence in primary care
Artificial intelligence methods are being utilized in radiology, cardiology and other medical specialty fields to quickly and accurately process large quantities of health data to improve the diagnostic and treatment power of health care teams.
Identifying light sources using artificial intelligence
Identifying sources of light plays an important role in the development of many photonic technologies, such as lidar, remote sensing, and microscopy.
Artificial intelligence could serve as backup to radiologists' eyes
Deploying artificial intelligence could help radiologists to more accurately classify lung diseases.
Reducing the carbon footprint of artificial intelligence
MIT system cuts the energy required for training and running neural networks.
Researchers rebuild the bridge between neuroscience and artificial intelligence
In an article in the journal Scientific Reports, researchers reveal that they have successfully rebuilt the bridge between experimental neuroscience and advanced artificial intelligence learning algorithms.
Artificial intelligence can help some businesses but may not work for others
The temptation for businesses to use artificial intelligence and other technology to improve performance, drive down labor costs, and better the bottom line is understandable.
Artificial intelligence could help predict future diabetes cases
A type of artificial intelligence called machine learning can help predict which patients will develop diabetes, according to an ENDO 2020 abstract that will be published in a special supplemental section of the Journal of the Endocrine Society.
Artificial intelligence for very young brains
Montreal's CHU Sainte-Justine children's hospital and the ÉTS engineering school pool their expertise to develop an innovative new technology for the segmentation of neonatal brain images.
Putting artificial intelligence to work in the lab
An Australian-German collaboration has demonstrated fully-autonomous SPM operation, applying artificial intelligence and deep learning to remove the need for constant human supervision.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
More Artificial Intelligence News and Artificial Intelligence Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Nina
Producer Tracie Hunte stumbled into a duet between Nina Simone and the sounds of protest outside her apartment. Then she discovered a performance by Nina on April 7, 1968 - three days after the assassination of Dr. Martin Luther King Jr. Tracie talks about what Nina's music, born during another time when our country was facing questions that seemed to have no answer, meant then and why it still resonates today.  Listen to Nina's brother, Samuel Waymon, talk about that April 7th concert here.