Chiral crystals blowing off polarized spins: Phenomena detected without magnets

April 21, 2020

When looking at a left hand in the mirror, it looks like a right hand. However, the left hand never overlaps the right hand. Such a geometrical relationship that an image of the object in a plane mirror cannot be brought to coincide with itself is called chirality. A clockwise or counterclockwise helical staircase is an example of a chiral structure. On the other hand, a round ball is not chiral since its image in a mirror overlaps the original shape.

The structure of a material which consists of atoms and/or molecules may exhibit chirality. It is known that chiral molecules or chiral crystals show a chiral structure, as exemplified by deoxyribonucleic acid (DNA), amino acids, and sugars. Such chiral substances are inevitable in living activity. However, their electrical and magnetic characteristics have attracted little attention so far.

Recently, it was found by Ron Naaman et al. in Israel that electron spins orient in the same direction when electrons pass through chiral molecules such as DNA. Because the direction of spins depends on the handedness of a chiral molecule structure, this phenomenon is called chirality-induced spin selectivity (CISS).

CISS research clarified that non-magnetic chiral molecules make electrons spin polarized. This phenomenon is very puzzling and its mechanism remains to be clarified. To produce a spin-polarized state in a non-magnetic material is an important research target to promote the next generation electronics and quantum science. It is very interesting to investigate how universal the spin-polarized phenomena are in chiral materials widely found in molecules and crystals.

In this study, the researchers at Osaka Prefecture University, Institute for Molecular Science, The Open University of Japan, and Toho University focused not a chiral molecule but a 'chiral crystal'. The chiral crystal that the researchers have investigated possesses a helical arrangement of atoms twisting in one direction. Such a helical structure appears all over the chiral crystal, as shown in upper panel of Figure. Although molecules are very tiny invisible entities, crystals are large enough to be handled. The crystals also exhibit fabrication feasibility and material stability in usual cases.

A chiral crystal CrNb3S6 used in this study is a metal that conducts electricity well but exhibits no magnetism at room temperature in the absence of magnetic field. However, the experiments clarified that electrons flowing in CrNb3S6 are spin polarized. Namely, the chiral crystal plays a role to make the spins of flowing electrons aligned in the same direction spontaneously.

Applying an electrical current into the coil found in our daily life induces magnetic fields in the coil. This is a macroscopic electromagnet generating macroscopic magnetic fields. A helical atomic configuration found in the crystals plays a role to generate polarized spins. Namely, it behaves as a 'microscopic' electromagnet generating polarized spin in the microscopic tiny world.

This study clarified that spin-polarized phenomena initially found in chiral molecules occur even in chiral solid crystals, suggesting that such phenomena appear universally in a wide range of chiral materials from chiral molecules to chiral crystals. The study made a fundamental and significant contribution to the research field of spin manipulation and detection in combination with chiral systems.
-end-
Research Contacts:
Prof. Yoshihiko TOGAWA, Osaka Prefecture University
E-mail: y-togawa_at_pe.osakafu-u.ac.jp

Prof. Hiroshi M. YAMAMOTO, Institute for Molecular Science
E-mail: yhiroshi_at_ims.ac.jp

Prof. Jun-ichiro KISHINE, The Open University of Japan
E-mail: kishine_at_ouj.ac.jp

Prof. Jun-ichiro OHE, Toho University
E-mail: junichirou.ohe_at_sci.toho-u.ac.jp

National Institutes of Natural Sciences

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.