Nav: Home

How do our cells respond to stress?

April 21, 2020

Cells are often exposed to stressful conditions that can be life threatening, such as high temperatures or toxins. Fortunately, our cells are masters of stress management with a powerful response program: they cease to grow, produce stress-protective factors, and form large structures, which are called stress granules. Scientists at the Biotechnology Center (BIOTEC) of the TU Dresden and the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), together with partners in Heidelberg and St. Louis (USA) have investigated how these mysterious structures assemble and dissolve, and what may cause their transition into a pathological state as observed in neurodegenerative diseases such as ALS (amyotrophic lateral sclerosis). Their results were published in the renowned scientific journal Cell.

ALS is a hitherto incurable disease of the central nervous system in which the motor neurons - nerve cells responsible for the muscles movement - gradually die. Do stress granules play a role in this process?

Stress granules are formed in the cytoplasm of the cell and assemble from a large number of macromolecular components such as messenger RNAs and RNA-binding proteins. Stress granules usually disassemble when the stress subsides, a process which is promoted by the dynamic nature of stress granules. However, a hallmark of ALS is the presence of non-dynamic, persistent forms of stress granules.

"In ALS, patients suffer from muscle weakness and paralysis. Stress granule-containing motor neurons slowly degenerate, causing a progressive loss of motor functions. We need to better understand the complex biology of stress granules in order to design and develop future therapeutic strategies that counteract the course of the disease. But the complex environment of the cells within an organism makes this difficult," explains Dr. Titus Franzmann, one of the senior authors of the publication.

In order to systematically test their hypotheses about the assembly of stress granules and the pathology causing molecular changes, the scientists developed a controlled environment using an in vitro system with purified components that allowed the recreation of stress granules in a test tube. They observed stress granule assembly step by step and characterized the critical factors underlying their dynamics.

"Stress granules have a very complex structure. Nevertheless, their formation depends primarily on the behavior of a single protein - the RNA-binding protein G3BP," says Dr. Jordina Guillén-Boixet, one of the first authors of the study. "This protein undergoes a critical structural change: Under non-stress conditions G3BP adopts a compact state that does not allow stress granules to assemble. But under stress, RNA molecules bind to G3BP allowing multiple interactions that promote the assembly of dynamic stress granules. The subsequent transition from dynamic into non-dynamic state, which may be caused for example by prolonged stress, may trigger the death of the motor neurons, as we can observe in the disease ALS."

The research project was initiated in 2015 and led by the Alberti research group at TU Dresden´s BIOTEC. The close co-operation of 23 scientists from the TU Dresden, the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, the European Molecular Biology Laboratory in Heidelberg and the Washington University in St. Louis (USA) was central for the success of the project. Prof. Simon Alberti: "There is a number of remaining questions. Our experimental system at BIOTEC is now available for further testing and will be central to developing new diagnostics and therapeutics to combat neurodegenerative diseases such as ALS."
-end-
The research project was funded by the European Research Council (ERC), the Human Frontiers Science Program (HFSP), the European Molecular Biology Organization (EMBO), the German Research Foundation (DFG), the Federal Ministry of Education and Research (BMBF) and the Joint Neurodegenerative Disease Research Program (JPND) of the EU.

The Biotechnology Center (BIOTEC) was founded in 2000 as a central scientific unit of the TU Dresden. The BIOTEC is an interdisciplinary research center that develops innovative technologies driving the progress of modern life sciences in the areas of molecular cell and developmental biology, physical biology, and computational biology. It plays a central role in the Health Sciences, Biomedicine and Bioengineering profile of the TU Dresden. http://www.tu-dresden.de/biotec

Technische Universität Dresden

Related Stress Articles:

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.
Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.
How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS
How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.
Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.
How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.
Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.
Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.
Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.
Maternal stress at conception linked to children's stress response at age 11
A new study published in the Journal of Developmental Origins of Health and Disease finds that mothers' stress levels at the moment they conceive their children are linked to the way children respond to life challenges at age 11.
More Stress News and Stress Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.