Yale-NUS College scientists find bisulphates that curb efficacy of diesel engine catalysts

April 21, 2020

A team of researchers from Yale-NUS College, in collaboration with scientists in Sweden, has found that bisulphate species in the exhaust stream are strongly connected to decreasing the effectiveness of exhaust remediation catalysts in diesel engines. Their findings pave the way for synthesising more sulphur-tolerant catalysts and developing regeneration strategies for catalyst systems on diesel-powered freight vehicles. This could lead to lower emission of highly toxic nitrogen oxides from diesel engines, hence reducing pollution.

Yale-NUS College postdoctoral fellows Susanna Liljegren Bergman and Vitaly Mesilov, undergraduate researcher Xiao Yang (Class of 2021), and Professor of Science (Chemistry) Steven Bernasek, carried out this research. They worked with collaborators Sandra Dahlin and Professor Lars Pettersson in Sweden, and Dr Xi Shibo at the Singapore Synchrotron Light Source of the National University of Singapore. They utilised in-situ temperature-dependent Cu K-edge X-ray absorption spectroscopy to analyse exactly how sulphur oxides affect copper-exchanged chabazite framework (Cu-CHA) catalysts.

Catalysts composed of copper-exchanged zeolites with a chabazite framework (Cu-CHA) are currently the most efficient means to lower the emission of highly toxic nitrogen oxides from diesel engines. However, earlier studies showed that Cu-CHA catalysts' efficacy is reduced by sulphur oxides that are also present in diesel exhaust, which poses a problem as the catalysts become less effective at preventing nitrogen oxides from escaping into the atmosphere. In this study, the researchers found that the effectiveness of catalysts in diesel engines is most impacted by the presence or formation of bisulphates in the exhaust stream. Understanding the chemical mechanism of how catalysts in diesel engines are affected by sulphur oxides present in diesel exhaust would enable the development of more effective catalysts that could reduce the emission of nitrogen oxides from diesel engines.

With greater insight into the way sulphates affect catalysts, future work can be done to investigate how the negative effects can be mitigated. Additionally, the findings regarding sulphates may also be applied to other studies on the impact of phosphorous and phosphorous oxides, present in biodiesel fuel, on catalyst performance. This could lead to the creation of more effective catalysts for biodiesel-powered engines.

Prof Bernasek said, "The results of this fundamental research into the mechanisms of catalyst deactivation provide the basis for developing new catalysts and new catalyst regeneration protocols. More efficient and robust exhaust remediation catalysts benefit the environment by reducing the emission of nitrogen oxides and enabling the use of more efficient engines, cutting overall carbon emission. This helps to reduce the impact of the continued short-term use of fossil fuels, and speed our transition to carbon neutral biofuels."
The paper will be published in the July 2020 volume of Applied Catalysis B: Environmental, and has been made available online.

Yale-NUS College

Related Nitrogen Articles from Brightsurf:

Chemistry: How nitrogen is transferred by a catalyst
Catalysts with a metal-nitrogen bond can transfer nitrogen to organic molecules.

Illinois research links soil nitrogen levels to corn yield and nitrogen losses
What exactly is the relationship between soil nitrogen, corn yield, and nitrogen loss?

Reducing nitrogen with boron and beer
The industrial conversion of nitrogen to ammonium provides fertiliser for agriculture.

New nitrogen products are in the air
A nifty move with nitrogen has brought the world one step closer to creating a range of useful products -- from dyes to pharmaceuticals -- out of thin air.

'Black nitrogen'
In the periodic table of elements there is one golden rule for carbon, oxygen, and other light elements.

A deep dive into better understanding nitrogen impacts
This special issue presents a selection of 13 papers that advance our understanding of cascading consequences of reactive nitrogen species along their emission, transport, deposition, and the impacts in the atmosphere.

How does an increase in nitrogen application affect grasslands?
The 'PaNDiv' experiment, established by researchers of the University of Bern on a 3000 m2 field site, is the largest biodiversity-ecosystem functioning experiment in Switzerland and aims to better understand how increases in nitrogen affect grasslands.

Reducing reliance on nitrogen fertilizers with biological nitrogen fixation
Crop yields have increased substantially over the past decades, occurring alongside the increasing use of nitrogen fertilizer.

Flushing nitrogen from seawater-based toilets
With about half the world's population living close to the coast, using seawater to flush toilets could be possible with a salt-tolerant bacterium.

We must wake up to devastating impact of nitrogen, say scientists
More than 150 top international scientists are calling on the world to take urgent action on nitrogen pollution, to tackle the widespread harm it is causing to humans, wildlife and the planet.

Read More: Nitrogen News and Nitrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.