New OLED encapsulation method reduces water intrusion and increases lifetime

April 22, 2008

Researchers have developed an improved organic light emitting diode (OLED) sealing process to reduce moisture intrusion and improve device lifetime.

OLEDs are promising for the next generation of displays and solid state lighting because they use less power and can be more efficiently manufactured than current technology. However, the intrusion of moisture into the displays can damage or destroy an OLED's organic material.

"OLEDs have better color and flexibility and the capability of larger displays, but companies still need an inexpensive encapsulation method that can be used to mass produce organic electronics that don't allow moisture in," said Wusheng Tong, a senior research scientist at the Georgia Tech Research Institute (GTRI).

Manufacturers now seal displays in an inert atmosphere or in a vacuum environment. They glue a glass lid on top of the display substrate with a powder inside the display to absorb moisture that diffuses through the glue. These seals are expensive and labor-intensive to assemble.

With funding from GTRI's independent research and development program, Tong and his GTRI collaborators - senior research scientist Hisham Menkara and principal research scientist Brent Wagner - have replaced the glass enclosure with a thin-film barrier formed by a less expensive conventional deposition method.

"We chose a passivation coating process that could be performed at room temperature so that the organic material remained intact," said Tong.

The researchers selected advanced ion assisted deposition, which utilizes reactive ions to deposit a high-density, pinhole-free thin silicon oxynitride (SiON) film on the OLED surface.

"Ideally, the film should be as thin as possible, but if it's too thin, a pinhole or other defect could appear and cause a problem," explained Tong. "We found that a film of 50-200 nanometer thickness was perfect."

During testing, the SiON-encapsulated OLEDs showed no sign of degradation after seven months in an open-air environment, while the OLEDs without the coating degraded completely in less than two weeks under the same conditions.

When Tong conducted accelerating aging tests in an environmental chamber that maintained a temperature of 50 degrees Celsius and 50 percent relative humidity, the OLEDs encapsulated with SiON films showed little degradation for at least two weeks. The OLEDs without encapsulation, however, decomposed immediately.

"We've demonstrated that this deposition process improves the lifetime of the OLEDs by blocking the intrusion of moisture, so now we're hoping to work with industry partners to develop a mass production process for our encapsulation technique," added Tong.
-end-


Georgia Institute of Technology Research News

Related Oleds Articles from Brightsurf:

Invisible organic light-emitting diodes reach new world record
You can't see it with the naked eye, but a new fluorescent organic light-emitting diode (OLED) could shed light on the development of innovative applications in devices such as smartphone and television displays using near-infrared light.

Scientists develop method to detect charge traps in organic semiconductors
Scientists at Swansea University have developed a very sensitive method to detect the tiny signatures of so called 'charge traps' in organic semiconductors.

Future VR could employ new ultrahigh-res display
Repurposed solar panel research could be the foundation for a new ultrahigh-resolution microdisplay.

Two-dimensional MXene as a novel electrode material for next-generation display
Two-dimensional MXene as a novel electrode material for next-generation display.

Light from rare earth: new opportunities for organic light-emitting diodes
Efficient and stable blue OLED is still a challenge due to the lack of emitter simultaneously with high efficiency and short excited-state lifetime.

Deep-blue organic light-emitting diodes based on a doublet-emission cerium(III) complex
In this work, the authors have demonstrated a high external quantum efficiency (EQE) in deep-blue organic light-emitting diodes (OLEDs) based on a new cerium(III) complex Ce-1 as the emitter, which can achieve 100% exciton utilization efficiency (EUE).

New technology speeds up organic data transfer
An international research team, involving Newcastle University experts, developed visible light communication (VLC) setup capable of a data rate of 2.2?Mb/s by employing a new type of organic light-emitting diodes (OLEDs).

Title: Two-dimensional MXene as a novel electrode material for next-generation display
Researchers in the US and Korea reported the first efficient flexible light-emitting diodes with a two-dimensional titanium carbide MXene as a flexible and transparent electrode.

NMR confirms molecular switches retain function in 2D-array
Researchers led by Jiri Kaleta of IOCB Prague have synthesized regular 2D assemblies of isotopically labelled molecular switches and measured the properties of their isomerization, revealing that formation of such an assembly doesn't hamper the photochemical switching properties of the embedded molecules.

In search of the lighting material of the future
At the Paul Scherrer Institute PSI, researchers have gained insights into a promising material for organic light-emitting diodes (OLEDs).

Read More: Oleds News and Oleds Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.