The 1930s semi goes green

April 22, 2008

Three million of them were built; they stimulated a boom in employment and turned a nation of shop keepers into a nation of home owners.

The 1930s semi is an icon of its age but 80 years on it is about to undergo a green revolution.

Experts at The University of Nottingham together with the energy company E.ON have been granted special planning permission to build an original 1930s property. The house will be used to assess how to make best use of natural resources such as the sun, wind and rain, as well as for trialling the effectiveness of new carbon energy reducing technologies and materials.

The house will be built on University Park as is part of the School of Built Environment's Creative Energy Homes Project. It is one of six eco-homes being constructed as part of a prestigious study to stimulate sustainable design ideas and promote new ways of providing affordable, environmentally sustainable housing.

Dr Mark Gillott, research and project manager for Creative Energy Homes said: "The E.ON Research House project is an important addition to our site. 21 million homes in England (86% of the current stock) will still be in use by 2050. It is therefore vitally important that we identify and research technologies aimed at reducing the energy consumption associated with existing homes, these are issues that the vast majority of us can identify with."

Construction of E.ON UK's 2016 research house is expected to be completed in August this year.

Once built the 1930s replica will be upgraded in several stages over three years to meet the highest green building requirements.

The central element of the design is a lightweight extension built from modules which will have a roof positioned to maximise the potential of solar panels. Low carbon technology will also be used to generate and manage energy within the house. The additional living space this provides could be used as additional work or family areas.

Reshaping today's 1930s housing stock for 21st century sustainable living will be a huge task. But Dave Clarke, Head of Research and Development at E.ON UK said: "Homes are big contributors to the causes of climate change, as they currently account for almost a third of the carbon dioxide emitted in the UK. The average house emits enough carbon to fill six hot air balloons full of CO2 in a year.

"Even with the Government's target for all new homes to be zero carbon from 2016, we'll have to retro-fit low carbon measure to existing homes in order to significantly reduce our carbon emissions."

Dwellings in the UK account for approximately 28% of the UK total of carbon dioxide emissions through the burning of fossil fuel for heating, lights and appliances. This includes combustion on the premises, mainly natural gas for heating and cooking, and combustion in power stations to produce electricity for homes. Space heating accounts for 57%; water heating a further 25%; cooking 5% and lights and appliances 13%. The demand for energy to run heating/hot water systems and other home appliances such as refrigerators, cookers, lighting, etc is expected to be 13% higher in 2010 than it was in 1990.

As part of the project students will live in the house to assess the effectiveness of each stage in the eco-upgrade and monitoring equipment will be installed to measure the effectiveness of each of the upgrades.

Four of the new Creative Energy Homes have already been designed. The BASF house is now finished and the Stoneguard house, which is being constructed by students, is nearing completion.
-end-
Notes to Editors:

The University of Nottingham is ranked in the UK's Top 10 and the World's Top 70 universities by the Shanghai Jiao Tong (SJTU) and Times Higher (THES) World University Rankings.

It provides innovative and top quality teaching, undertakes world-changing research, and attracts talented staff and students from 150 nations. Described by The Times as Britain's "only truly global university", it has invested continuously in award-winning campuses in the United Kingdom, China and Malaysia.

Twice since 2003 its research and teaching academics have won Nobel Prizes. The University has won the Queen's Award for Enterprise in both 2006 (International Trade) and 2007 (Innovation -- School of Pharmacy).

Its students are much in demand from 'blue-chip' employers. Winners of Students in Free Enterprise for three years in succession, and current holder of UK Graduate of the Year, they are accomplished artists, scientists, engineers, entrepreneurs, innovators and fundraisers. Nottingham graduates consistently excel in business, the media, the arts and sport. Undergraduate and postgraduate degree completion rates are amongst the highest in the United Kingdom.

Additional information: E.ON is one of the UK's leading power and gas companies -- generating and distributing electricity, and retailing power and gas -- and is part of the E.ON group, the world's largest investor-owned power and gas company. E.ON employs around 18,000 people in the UK.

E.ON is the new name for Powergen. Our retail business is a leading energy supplier in the UK, with around 8 million electricity and gas customer accounts, covering domestic, SME and industrial.

More information is available from Dr Mark Gillott on +44 (0)115 8467677, mark.gillott@nottingham.ac.uk or Deanna Mooney at E.ON on +44 (0)2476 183678 or Media Relations Manager Lindsay Brooke in the University's Communications Office on +44 (0)115 9515751, lindsay.brooke@nottingham.ac.uk

University of Nottingham

Related Carbon Articles from Brightsurf:

The biggest trees capture the most carbon: Large trees dominate carbon storage in forests
A recent study examining carbon storage in Pacific Northwest forests demonstrated that although large-diameter trees (21 inches) only comprised 3% of total stems, they accounted for 42% of the total aboveground carbon storage.

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science

Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.

Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.

Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.

Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Read More: Carbon News and Carbon Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.