Germanium made laser compatible

April 22, 2013

Researchers from ETH Zurich, the Paul Scherrer Institute (PSI) and the Politec-nico di Milano have jointly developed a manufacturing technique to render the semiconductor germanium laser-compatible through high tensile strain. In their article recently published in "Nature Photonics", they reveal how they can gen-erate the necessary tensile strain efficiently. The scientists demonstrate how to use their method to effectively alter the optical properties of germanium, which is naturally unsuitable for lasing: "With a strain of three per cent, the material emits around twenty-five times more photons than in a relaxed state," explains Martin Süess, a doctoral student at the Laboratory for Nanometallurgy headed by Ralph Spolenak and the EMEZ at ETH Zurich. "That's enough to build lasers", adds his colleague Richard Geiger, a doctoral student at the Laboratory for Micro- and Nanotechnology at the PSI and the Institute for Quantum Electronics at ETH Zurich under Jérôme Faist.

High tension through microbridges

With the new method, the researchers use the slight tension generated in ger-manium when it evaporates on silicon, to bring the germanium into a laser-compatible, strechted form. This prestrain is enhanced with so-called micro-bridges: the researchers centrally notch the sides of exposed germanium strips, which remain attached to the silicon layer at both ends. The two halves of the strip thus remain connected solely by an extremely narrow bridge, which is for physical reasons precisely where the strain in the germanium grows so intense that it becomes laser-compatible.

"The tensile strain applied to the germanium is comparable to the force exerted on a pencil as two lorries pull upon it in opposite directions," says Hans Sigg, the project manager at the PSI, explaining the feat on a micrometre scale in everyday proportions. Through the expansion of the material its properties change because the individual atoms slightly move apart, which enables the electrons within the material to reach energy levels that are favourable for the generation of light particles, so-called photons.

Germanium laser for the computer of the future

The interdisciplinary research team's method could increase the performance of future computer generations considerably. After all, in order to improve comput-er performance, computer chips have constantly been made smaller and more densely packed. However, this approach will eventually reach its limits in the foreseeable future. "In order to further increase performance and speed, the individual components need to be linked more closely and communicate with each other more efficiently," explains Süess. This requires new transmission paths that are faster than today, where the signals are still transmitted via elec-tricity and copper cables.

"The future way to go is light," says Geiger. However, in order to be able to use light to transfer data, first of all light sources are needed that are so small as to fit onto a chip and react well to silicon, the base material of all computer chips. Silicon itself is not suitable for the emission of laser light, which is also the reason why it is so important for the researchers to make germanium laser-compatible: "Germanium is perfectly compatible with silicon and already used in the computer industry for the production of silicon chips," explains Geiger. If it is possible to build tiny lasers out of germanium using the new method, a system change is within reach. "We're on the right track," says Süess. The international team of researchers is currently in the process of actually constructing a germa-nium laser with the new method.

ETH Zurich

Related Laser Articles from Brightsurf:

Laser technology: New trick for infrared laser pulses
For a long time, scientists have been looking for simple methods to produce infrared laser pulses.

Sensors get a laser shape up
Laser writing breathes life into high-performance sensing platforms.

Laser-powered nanomotors chart their own course
The University of Tokyo introduced a system of gold nanorods that acts like a tiny light-driven motor, with its direction of motion is determined by the orientation of the motors.

What laser color do you like?
Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have developed a microchip technology that can convert invisible near-infrared laser light into any one of a panoply of visible laser colors, including red, orange, yellow and green.

Laser technology: The Turbulence and the Comb
While the light of an ordinary laser only has one single, well-defined wavelength, a so-called ''frequency comb'' consists of different light frequencies, which are precisely arranged at regular distances, much like the teeth of a comb.

A laser for penetrating waves
The 'Landau-level laser' is an exciting concept for an unusual radiation source.

Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.

The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.

The random anti-laser
Scientists at TU Wien have found a way to build the 'opposite' of a laser -- a device that absorbs a specific light wave perfectly.

Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.

Read More: Laser News and Laser Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to