Connecticut River watershed study will assess impacts of extreme rain events

April 22, 2014

A team of Yale researchers will lead a five-year, $3 million study to determine whether an increase in extreme rain events is affecting the transport of dissolved organic matter (DOM) through the Connecticut River watershed, a phenomenon they say could alter the chemical composition and water quality of the watershed and Long Island Sound.

With funding from the National Science Foundation's MacroSystems Biology program, researchers will collect data from dozens of points across the watershed, which begins in Canada and runs through five U.S. states, before emptying into Long Island Sound. Dissolved organic matter, a complex mix of compounds that leeches into waterways and gives rivers and streams their color, is a "master variable" in water systems; In addition to introducing both nutrients and pollutants, DOM influences the escape of carbon dioxide from the water and can impact the amount of light that penetrates the water. That, in turn, can affect levels of phytoplankton, a major food source for many organisms.

The researchers say that shifts in the transport of DOM could potentially impact mercury inputs to inland waters and the Sound, dissolved oxygen concentrations, and water clarity.

"Understanding how storms impact water quality and the delivery of materials to the coast is important to managing these vital ecosystems," said lead investigator Peter Raymond, a professor of ecosystem ecology at the Yale School of Forestry & Environmental Studies.

Other contributors to the study include Jon Morrison and Jamie Shanley from the U.S. Geological Survey, Bill Sobczak from the College of the Holy Cross, and Aron Stubbins from the University of Georgia

The study could also reveal new insights into the regional-scale dynamics of river systems. "The proposed work will test a new conceptual framework for drainage networks in order to understand how the chemistry of water changes as it moves from tiny streams to big rivers and how this change is impacted by precipitation events of different sizes," Raymond said.

While conventional theory holds that most DOM entering watersheds is naturally processed by organisms in "first order" streams -- the smallest streams at the headwaters of river networks -- the researchers suggest that these biogeochemical reactions might actually be occurring largely in the higher order rivers.

A critical reason is that major precipitation events are flushing an increasing amount of these materials directly into the larger, faster-moving rivers before there is time for those reactions to occur, Raymond said.

"Using the observations in conjunction with the computer modeling, we will project how things might change in the future -- perhaps under more intense rainfall regimes or more frequent rainfall," said James Saiers, a professor of hydrology at F&ES and investigator in the study.

The New England region is a predicted hotspot for more intense storms, or "hydrologic acceleration," as a result of climate change, the researchers say.

Beyond simply exploring how heavy rain events affect the transport of materials, however, the study will also test traditional assumptions of how different components of river systems interact even under normal circumstances, said Henry Gholz, program director of National Science Foundation's (NSF) Division of Environmental Biology.

"For about 40 years we have viewed moving freshwater systems, from the small headwater creeks to the mouths of major rivers, as linked in a relatively simple upstream to downstream continuum," said Gholz. "This project will test a new conceptual model for that... While some material is moved down the system and is processed as it moves from top to bottom, there are also places in the river system where things happen more, or less, rapidly.

"This project really has global significance in terms of what the potential impacts could be for this field."

The NSF's MacroSystems Biology program supports large-scale projects exploring biological systems at regional to continental scales.
-end-


Yale School of Forestry & Environmental Studies

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.