Nav: Home

Surface matters: Huge reduction of heat conduction observed in flat silicon channels

April 22, 2015

The ability of materials to conduct heat is a concept that we are all familiar with from everyday life. The modern story of thermal transport dates back to 1822 when the brilliant French physicist Jean-Baptiste Joseph Fourier published his book "Théorie analytique de la chaleur" (The Analytic Theory of Heat), which became a corner stone of heat transport. He pointed out that the thermal conductivity, i.e., ratio of the heat flux to the temperature gradient is an intrinsic property of the material itself.

The advent of nanotechnology, where the rules of classical physics gradually fail as the dimensions shrink, is challenging Fourier's theory of heat in several ways. A paper published in ACS Nano and led by researchers from the Max Planck Institute for Polymer Research (Germany), the Catalan Institute of Nanoscience and Nanotechnology (ICN2) at the campus of the Universitat Autònoma de Barcelona (UAB) (Spain) and the VTT Technical Research Centre of Finland (Finland) describes how the nanometre-scale topology and the chemical composition of the surface control the thermal conductivity of ultrathin silicon membranes. The work was funded by the European Project Membrane-based phonon engineering for energy harvesting (MERGING).

The results show that the thermal conductivity of silicon membranes thinner than 10 nm is 25 times lower than that of bulk crystalline silicon and is controlled to a large extent by the structure and the chemical composition of their surface. Combining state-of-the-art realistic atomistic modelling, sophisticated fabrication techniques, new measurement approaches and state-of-the-art parameter-free modelling, researchers unravelled the role of surface oxidation in determining the scattering of quantized lattice vibrations (phonons), which are the main heat carriers in silicon.

Both experiments and modelling showed that removing the native oxide improves the thermal conductivity of silicon nanostructures by almost a factor of two, while successive partial re-oxidation lowers it again. Large-scale molecular dynamics simulations with up to 1,000,000 atoms allowed the researchers to quantify the relative contributions to the reduction of the thermal conductivity arising from the presence of native SiO2 and from the dimensionality reduction evaluated for a model with perfectly specular surfaces.

Silicon is the material of choice for almost all electronic-related applications, where characteristic dimensions below 10 nm have been reached, e.g. in FinFET transistors, and heat dissipation control becomes essential for their optimum performance. While the lowering of thermal conductivity induced by oxide layers is detrimental to heat spread in nanoelectronic devices, it will turn useful for thermoelectric energy harvesting, where efficiency relies on avoiding heat exchange across the active part of the device.

The chemical nature of surfaces, therefore, emerges as a new key parameter for improving the performance of Si-based electronic and thermoelectric nanodevices, as well as of that of nanomechanical resonators (NEMS). This work opens new possibilities for novel thermal experiments and designs directed to manipulate heat at such scales.
-end-


Universitat Autonoma de Barcelona

Related Thermal Conductivity Articles:

Understanding river thermal landscapes
The BioScience Talks podcast features discussions of topical issues related to the biological sciences.
Granular material conductivity increases in mysterious ways under pressure
In a recent study published in EPJ E, a French team of physicists made systematic measurements of the electrical resistance -- which is inversely related to conductivity -- of metallic, oxidized granular materials in a single 1-D layer and in 3-D, under compression.
Understanding a river's 'thermal landscape' may be the key to saving it
Inexpensive sensor technologies have enabled an explosion in the availability of river temperature data and in statistical models for understanding them.
Reducing down to one-third of thermal resistance by WOW technology for 3-D DRAM application
Researchers at Tokyo institute of Technology presented a design guide for reducing 30 percent of thermal resistance for three-dimensional stacked devices compared with the conventional ICs using solder bump joint structure.
Building a market for renewable thermal technologies
A Yale-led analysis concludes that renewable thermal technologies have significant market potential in the state if supported by appropriate public policy and financing tools.
The secrets of vibration-enhanced conductivity in graphene
Graphene still holds some unexplained qualities, which are important in connection with electronic applications where high-conductivity matters.
New study will help find the best locations for thermal power stations in Iceland
A new research article, with lead authors from the University of Gothenburg, gives indications of the best places in Iceland to build thermal power stations.
Tortoise electrons trying to catch up with hare photons give graphene its conductivity
How electrons interact with other electrons at quantum scale in graphene affects how quickly they travel in the material, leading to its high conductivity.
Researchers find way to tune thermal conductivity of 2-D materials
Researchers have found an unexpected way to control the thermal conductivity of two-dimensional (2-D) materials, which will allow electronics designers to dissipate heat in electronic devices that use these materials.
New optical material offers unprecedented control of light and thermal radiation
A team led by Nanfang Yu, assistant professor of applied physics at Columbia Engineering, has discovered a new phase-transition optical material -- samarium nickelate -- and demonstrated novel devices that dynamically control light over a much broader wavelength range and with larger modulation amplitude than what has currently been possible.

Related Thermal Conductivity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...