Nav: Home

Dark matter does not contain certain axion-like particles

April 22, 2016

Researchers at Stockholm University are getting closer to corner light dark-matter particle models. Observations can rule out some axion-like particles in the quest for the content of dark matter. The article is now published in the Physical Review Letters.

Physicists are still struggling with the conundrum of identifying more than 80 percent of the matter in the Universe. One possibility is that it is made up by extremely light particles which weigh less than a billionth of the mass of the electron. These particles are often called axion-like particles (ALPs). Since ALPs are hard to find, the researchers have not yet been able to test different types of ALPs that could be a part of the dark matter.

For the first time the researchers used data from NASA's gamma-ray telescope on the Fermi satellite to study light from the central galaxy of the Perseus galaxy cluster in the hunt for ALPs. The researchers found no traces of ALPs and, for the first time, the observations were sensitive enough to exclude certain types of ALPs (ALPs can only constitute dark matter if they have certain characteristics).

One cannot detect ALPs directly but there is a small chance that they transform into ordinary light and vice versa when travelling through a magnetic field. A research team at Stockholm University used a very bright light source, the central galaxy of the Perseus galaxy cluster, to look for these transformations. The energetic light, so-called gamma radiation, from this galaxy could change its nature to ALPs while traveling through the magnetic field that fills the gas between the galaxies in the cluster.

"The ALPs we have been able to exclude could explain a certain amount of dark matter. What is particularly interesting is that with our analysis we are reaching a sensitivity that we thought could only be obtained with dedicated future experiments on Earth", says Manuel Meyer, post-doc at the Department of Physics, Stockholm University.

Searches for ALPs with the Fermi telescope will continue. More than 80 percent of the matter in the Universe remains to identify. The mysterious dark matter shows itself only through its gravity, it does neither absorb nor radiate any form of light.
-end-
Contact information

Manuel Meyer, postdok, Fysikum, Stockholm University, e-mail manuel.meyer@fysik.su.se
Jan Conrad, professor, Fysikum, Stockholm University, phone +46(0)8 55 37 87 69, e-mail conrad@fysik.su.se
Miguel Sánchez-Conde, Wenner-Gren Fellow, Fysikum, Stockholm University, e-mail sanchezconde@fysik.su.se

Stockholm University

Related Dark Matter Articles:

Looking for dark matter with the universe's coldest material
A study in PRL reports on how researchers at ICFO have built a spinor BEC comagnetometer, an instrument for studying the axion, a hypothetical particle that may explain the mystery of dark matter.
Looking for dark matter
Dark matter is thought to exist as 'clumps' of tiny particles that pass through the earth, temporarily perturbing some fundamental constants.
New technique looks for dark matter traces in dark places
A new study by scientists at Lawrence Berkeley National Laboratory, UC Berkeley, and the University of Michigan -- published today in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.
Researchers look for dark matter close to home
Eighty-five percent of the universe is composed of dark matter, but we don't know what, exactly, it is.
Galaxy formation simulated without dark matter
For the first time, researchers from the universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter.
Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.
New clues on dark matter from the darkest galaxies
Low-surface-brightness (LSB) galaxies offered important confirmations and new information on one of the largest mysteries of the cosmos: dark matter.
A new approach to the hunt for dark matter
A study that takes a novel approach to the search for dark matter has been performed by the BASE Collaboration at CERN working together with a team at the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz (JGU).
Could the mysteries of antimatter and dark matter be linked?
RIKEN researchers and collaborators have performed the first laboratory experiments to determine whether a slightly different way in which matter and antimatter interact with dark matter might be a key to solving both mysteries.
Placing another piece in the dark matter puzzle
A team led by Prof Dmitry Budker has continued their search for dark matter within the framework of the 'Cosmic Axion Spin Precession Experiment' (or 'CASPEr' for short).
More Dark Matter News and Dark Matter Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.