Developing tools to screen traumatic brain injury therapies

April 22, 2016

HOUSTON, April 22, 2016 - Each year, an estimated 1.7 million Americans sustain a traumatic brain injury (TBI), with an estimated 5 million Americans suffering from long-term effects. Among veterans and athletes, this rate is much higher. Current treatment options for TBI are limited, while annual costs, including lost wages and productivity, are estimated to be about $60 billion.

Amy Sater, professor and chair of the Department of Biology and Biochemistry at the University of Houston, was awarded a two-year, $386,000 grant from the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation to develop a model for studying TBI. This is the first Kleberg Foundation grant awarded to UH.

"The goal of this project is to develop a system that will allow us to perform large-scale screens to search for possible drugs that can facilitate recovery from brain injury," Sater said.

To develop this system, Sater will be using the tadpole of the African clawed frog, Xenopus laevis (Xenopus for short), which offers some crucial advantages for performing large-scale TBI studies. Small, with a rapid reproductive rate, they have a brain that can be easily visualized until the late tadpole phase.

Other model organisms - typically mouse and rat - have longer life cycles, brains encased in skulls and are expensive to maintain. By comparison, Xenopus offers an alternative that can allow wide-scale searches for potential therapies.

To develop an experimental system, Sater and her research team will be developing the tools and protocols that will allow them to study brain injuries in Xenopus. This will involve developing transgenic lines that allow for easy visualization of specific cell types in the brain, as well as developing the protocols to induce brain injuries.

To interpret these results, Sater's group will collaborate with the lab of Badri Roysam, professor and chair of the Department of Electrical and Computer Engineering. Roysam's group will develop methods for quantitative analysis of images of cells responding to injury.

"We will be focusing on cells called astrocytes," Sater said. "When there is a brain injury, the frontline response of the brain is mediated in large part by astrocytes."

Astrocytes surround neurons and serve a variety of important roles within the brain. One role is the repair and scarring process of the brain and spinal cord. Following a traumatic injury, astrocytes migrate to the damaged site, forming a glial scar that limits the extent of the injury.

In addition to forming a glial scar, astrocytes also play a role in the post-TBI inflammatory response. In humans, post-TBI inflammation persists for months, even years, and is considered to be inhibitory to long-term healing.

Sater's research group will create tadpoles expressing fluorescent proteins in astrocytes, allowing them to easily differentiate these cells from the surrounding tissue. This way, they can easily image the response of astrocytes to injury, giving them a way to assess rate of recovery. Sater's group will also adapt protocols that are used to study brain injuries in mice for use in Xenopus.

Once these tools are in place, Sater's group will have the capacity to treat large numbers of tadpoles with different compounds, while also assessing their efficacy in promoting brain injury recovery.
This grant will provide funds for two years and is eligible for the Texas Research Initiative Program, which matches research funds awarded through private gifts and endowments.

Editor's note: Story courtesy of Rachel Fairbank, College of Natural Sciences and Mathematics

About the University of Houston

The University of Houston is a Carnegie-designated Tier One public research university recognized by The Princeton Review as one of the nation's best colleges for undergraduate education. UH serves the globally competitive Houston and Gulf Coast Region by providing world-class faculty, experiential learning and strategic industry partnerships. Located in the nation's fourth-largest city, UH serves more than 42,700 students in the most ethnically and culturally diverse region in the country. For more information about UH, visit the university's newsroom at

About the College of Natural Sciences and Mathematics

The UH College of Natural Sciences and Mathematics, with 193 ranked faculty and nearly 6,000 students, offers bachelor's, master's and doctoral degrees in the natural sciences, computational sciences and mathematics. Faculty members in the departments of biology and biochemistry, chemistry, computer science, earth and atmospheric sciences, mathematics and physics conduct internationally recognized research in collaboration with industry, Texas Medical Center institutions, NASA and others worldwide.

To receive UH science news via email, sign up for UH-SciNews at

University of Houston

Related Traumatic Brain Injury Articles from Brightsurf:

Point-of-care biomarker assay for traumatic brain injury
Intracranial abnormalities on CT scan in patients with traumatic brain injury (TBI) can be predicted by glial fibrillary acidic protein (GFAP) levels in the blood.

Long-studied protein could be a measure of traumatic brain injury
WRAIR scientists have recently demonstrated that cathepsin B, a well-studied protein important to brain development and function, can be used as biomarker, or indicator of severity, for TBI.

Reducing dangerous swelling in traumatic brain injury
After a traumatic brain injury (TBI), the most harmful damage is caused by secondary swelling of the brain compressed inside the skull.

Blue light can help heal mild traumatic brain injury
Daily exposure to blue wavelength light each morning helps to re-entrain the circadian rhythm so that people get better, more regular sleep which was translated into improvements in cognitive function, reduced daytime sleepiness and actual brain repair.

Dealing a therapeutic counterblow to traumatic brain injury
A team of NJIT biomedical engineers are developing a therapy which shows early indications it can protect neurons and stimulate the regrowth of blood vessels in damaged tissue.

Predictors of cognitive recovery following mild to severe traumatic brain injury
Researchers have shown that higher intelligence and younger age are predictors of greater cognitive recovery 2-5 years post-mild to severe traumatic brain injury (TBI).

Which car crashes cause traumatic brain injury?
Motor vehicle crashes are one of the most common causes of TBI-related emergency room visits, hospitalizations and deaths.

Traumatic brain injury and kids: New treatment guidelines issued
To help promote the highest standards of care, and improve the overall rates of survival and recovery following TBI, a panel of pediatric critical care, neurosurgery and other pediatric experts today issued the third edition of the Brain Trauma Foundation Guidelines for the Management of Pediatric Severe TBI.

Addressing sleep disorders after traumatic brain injury
Amsterdam, NL, December 10, 2018 - Disorders of sleep are some of the most common problems experienced by patients after traumatic brain injury (TBI).

Rutgers researchers discover possible cause for Alzheimer's and traumatic brain injury
Rutgers researchers discover a possible cause for Alzheimer's and traumatic brain injury, and the new mechanism may have also led to the discovery of an effective treatment.

Read More: Traumatic Brain Injury News and Traumatic Brain Injury Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to