Nav: Home

Developing tools to screen traumatic brain injury therapies

April 22, 2016

HOUSTON, April 22, 2016 - Each year, an estimated 1.7 million Americans sustain a traumatic brain injury (TBI), with an estimated 5 million Americans suffering from long-term effects. Among veterans and athletes, this rate is much higher. Current treatment options for TBI are limited, while annual costs, including lost wages and productivity, are estimated to be about $60 billion.

Amy Sater, professor and chair of the Department of Biology and Biochemistry at the University of Houston, was awarded a two-year, $386,000 grant from the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation to develop a model for studying TBI. This is the first Kleberg Foundation grant awarded to UH.

"The goal of this project is to develop a system that will allow us to perform large-scale screens to search for possible drugs that can facilitate recovery from brain injury," Sater said.

To develop this system, Sater will be using the tadpole of the African clawed frog, Xenopus laevis (Xenopus for short), which offers some crucial advantages for performing large-scale TBI studies. Small, with a rapid reproductive rate, they have a brain that can be easily visualized until the late tadpole phase.

Other model organisms - typically mouse and rat - have longer life cycles, brains encased in skulls and are expensive to maintain. By comparison, Xenopus offers an alternative that can allow wide-scale searches for potential therapies.

To develop an experimental system, Sater and her research team will be developing the tools and protocols that will allow them to study brain injuries in Xenopus. This will involve developing transgenic lines that allow for easy visualization of specific cell types in the brain, as well as developing the protocols to induce brain injuries.

To interpret these results, Sater's group will collaborate with the lab of Badri Roysam, professor and chair of the Department of Electrical and Computer Engineering. Roysam's group will develop methods for quantitative analysis of images of cells responding to injury.

"We will be focusing on cells called astrocytes," Sater said. "When there is a brain injury, the frontline response of the brain is mediated in large part by astrocytes."

Astrocytes surround neurons and serve a variety of important roles within the brain. One role is the repair and scarring process of the brain and spinal cord. Following a traumatic injury, astrocytes migrate to the damaged site, forming a glial scar that limits the extent of the injury.

In addition to forming a glial scar, astrocytes also play a role in the post-TBI inflammatory response. In humans, post-TBI inflammation persists for months, even years, and is considered to be inhibitory to long-term healing.

Sater's research group will create tadpoles expressing fluorescent proteins in astrocytes, allowing them to easily differentiate these cells from the surrounding tissue. This way, they can easily image the response of astrocytes to injury, giving them a way to assess rate of recovery. Sater's group will also adapt protocols that are used to study brain injuries in mice for use in Xenopus.

Once these tools are in place, Sater's group will have the capacity to treat large numbers of tadpoles with different compounds, while also assessing their efficacy in promoting brain injury recovery.
-end-
This grant will provide funds for two years and is eligible for the Texas Research Initiative Program, which matches research funds awarded through private gifts and endowments.

Editor's note: Story courtesy of Rachel Fairbank, College of Natural Sciences and Mathematics

About the University of Houston

The University of Houston is a Carnegie-designated Tier One public research university recognized by The Princeton Review as one of the nation's best colleges for undergraduate education. UH serves the globally competitive Houston and Gulf Coast Region by providing world-class faculty, experiential learning and strategic industry partnerships. Located in the nation's fourth-largest city, UH serves more than 42,700 students in the most ethnically and culturally diverse region in the country. For more information about UH, visit the university's newsroom at http://www.uh.edu/news-events/.

About the College of Natural Sciences and Mathematics

The UH College of Natural Sciences and Mathematics, with 193 ranked faculty and nearly 6,000 students, offers bachelor's, master's and doctoral degrees in the natural sciences, computational sciences and mathematics. Faculty members in the departments of biology and biochemistry, chemistry, computer science, earth and atmospheric sciences, mathematics and physics conduct internationally recognized research in collaboration with industry, Texas Medical Center institutions, NASA and others worldwide.

To receive UH science news via email, sign up for UH-SciNews at http://www.uh.edu/news-events/mailing-lists/sciencelistserv/index.php.

University of Houston

Related Traumatic Brain Injury Articles:

New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
Studies uncover long-term effects of traumatic brain injury
Doctors are beginning to get answers to the question that every parent whose child has had a traumatic brain injury wants to know: What will my child be like 10 years from now?
People with traumatic brain injury approximately 2.5 times more likely to be incarcerated
People who have suffered a traumatic brain injury are approximately 2.5 times more likely to be incarcerated in a federal correctional facility in Canada than people who have not, a new study has found.
Traumatic brain injury associated with long-term psychosocial outcomes
Traumatic brain injury (TBI) during youth is associated with elevated risks of impaired adult functioning, according to a longitudinal study published in PLOS Medicine.
Curbing the life-long effects of traumatic brain injury
A fall down the stairs, a car crash, a sports injury or an explosive blast can all cause traumatic brain injury (TBI).
More Traumatic Brain Injury News and Traumatic Brain Injury Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...