Brainy new approaches to autism, chronic pain, concussion and more

April 22, 2018

Technological advances have ushered in a new era of discovery in neuroscience. The Experimental Biology 2018 meeting (EB 2018) will feature an array of research findings on the brain and nervous system. The studies shed new light on the intricate circuitry behind our thought processes, feelings and behaviors and offer leads for both high-tech and low-tech treatment approaches.

Innovative nanocapsules could improve delivery of drug for Autism Spectrum Disorder

The hormone oxytocin has been shown to be helpful for improving social interactions in people with Autism Spectrum Disorder and other neurological conditions. However, its effects are very short term because the hormone breaks down quickly in the bloodstream and cannot cross the blood-brain barrier to enter the brain. A team of scientists at Mercer University have developed tiny capsules to shuttle oxytocin across the blood-brain barrier and slow its degradation. In experiments conducted in cells and mice, the nanocapsules appear to last longer and engender stronger prosocial effects than oxytocin alone. If successful in humans, the technology could improve autism treatment and potentially be applied to other drugs aimed at treating seizures, inflammation and other neurological problems.

Kevin Murnane will present this research at the American Society for Pharmacology and Experimental Therapeutics annual meeting at EB on Tuesday, April 24, from 12:30-2:30 p.m. in the Exhibit Hall (poster C121) (abstract).

Rabies and herpes viruses harnessed for new brain circuit mapping

Researchers from the University of California, Irvine are using a surprising technique to make new discoveries about the layout of the brain's center for learning, memory and spatial navigation. Although the hippocampus has been well studied, traditional mapping techniques do not provide information about specific cell types or the relative strengths of the connections between neurons. To take a closer look at how different areas of the hippocampus interact, the researchers injected the brains of live mice with viruses including rabies and herpes simplex virus. The scientists then traced the viruses as they replicated within neurons and spread from cell to cell, typically by jumping across the synapses that link neurons to each other. The researchers also induced specific neurons to fire and analyzed behavioral changes in the mice. Taken together, the experiments provide new insights about the hippocampus and, in particular, how two segments of it interact to regulate learning and memory.

Xiangmin Xu will present this research at the American Association of Anatomists annual meeting at EB on Sunday, April 22, from 4-4:30 p.m. in Room 11A (abstract). Images available.

Fighting pain by tracking it back to its place of origin

There is still much scientists do not understand about how the body transmits and regulates pain signals. Researchers at Texas A&M are taking a detailed look at the thalamus, a part of the brain where most pain signals are processed, in hopes of finding new treatments for chronic pain that do not have the side effects or addiction potential of existing therapies like opioids and other drugs. The team has engineered mice that produce glowing proteins when pain-activated neurons fire and used genetically modified rabies virus as a tracer to mark how pain signals travel from neuron to neuron. By combining these techniques, the team has been able to create a brain-wide map of the neurons that feed pain signals into the thalamus, illuminating specific areas that might be targeted with new therapeutics.

Mikhail Umorin will present this research at the American Association of Anatomists annual meeting at EB on Sunday, April 22, from 5-5:30 p.m. in Room 11A (abstract).

Exercise after concussion appears to aid recovery

Doctors generally recommend refraining from exercise after a concussion (a type of brain injury typically caused by a blow to the head) in order to let the brain heal. However, a new study from the University of Western Ontario suggests that moderate aerobic exercise can be helpful for patient recovery and "return-to-sport" decisions. Among other symptoms, concussions can have effects on the heart rate, including increased heart rate and reduced heart rate variability, meaning that the heart rate stays high and doesn't rise and fall as it normally would in response to exertion. In the study, researchers randomly assigned seven teenage participants to three sessions of moderate exercise over the course of a week following a concussion, stopping short of a level of exertion that would exacerbate their headache or other symptoms. Eight other concussed teens were assigned to refrain from exercise for the week. Before-and-after tests revealed those who had exercised showed significant improvements in measures of heart rate and variability, indicating a quicker recovery, compared to those who had simply rested.

Alexandra Harriss will present this research at the American Physiological Society annual meeting at EB on Tuesday, April 24, from 10 a.m.-noon in the Exhibit Hall (poster A505) (abstract).

EB 2018 is the premier annual meeting of five scientific societies to be held April 21-25 at the San Diego Convention Center. Contact the media team for abstracts, images and interviews, or to obtain a free press pass to attend the meeting.
-end-
About Experimental Biology 2018

Experimental Biology is an annual meeting that attracts more than 14,000 scientists and exhibitors from five host societies and more than two dozen guest societies. With a mission to share the newest scientific concepts and research findings shaping clinical advances, the meeting offers an unparalleled opportunity for exchange among scientists from across the U.S. and the world who represent dozens of scientific areas, from laboratory to translational to clinical research. http://www.experimentalbiology.org #expbio

Find more news briefs and tipsheets at: https://www.eurekalert.org/meetings/eb/2018/newsroom.

Experimental Biology 2018

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.