Hole-forming protein may suppress tumor growth

April 22, 2019

PHILADELPHIA -- Sometimes cells need to die. The process of cell death is encoded within the genome of all higher organisms to kill off cancerous cells, and as a normal part of development to shape a mass of embryonic cells into the organism it will become. Now Jefferson researchers show a gene called gasdermin E, which is downregulated in many cancers, aids cells in dying in an unexpected way, and may also suppress tumor growth.

"We found that gasdermin E might be important in controlling cancer growth," says Emad Alnemri, PhD, the Thomas Eakins endowed Professor of Biochemistry and Molecular Biology at Sidney Kimmel Cancer Center--Jefferson Health (SKCC), who led the new research.

The researchers published the findings April 11th in the journal Nature Communications.

In many breast, gastric and colorectal cancers, gasdermin E gene expression is much lower than in healthy cells. Why cancers might turn down the expression of this gene was unknown. In previous research, Dr. Alnemri and colleagues found that gasdermin E participates in the cell death program when a cell death enzyme called caspase-3 cleaves it. The researchers discovered that the cleaved gasdermin E creates holes in the outer membrane of the cell. The holes cause the cell to swell and burst. The scientists thought a similar mechanism could be at work in cancerous cells.

When cells die, they undergo a series of coordinated, pre-programmed steps to self-destruct in a process known as apoptosis. When Dr. Alnemri and team treated cancer cells with a chemotherapy drug that sets the death cascade in motion, they found gasdermin E advances apoptosis by forming holes - not only in the cell membrane, but also in the membrane of organelles essential for life, the mitochondria, the cell's powerhouse. When gasdermin E pokes holes in mitochondria, it unleashes the proteins that carry out the final phases of programmed cell death.

Before gasdermin E can act, caspase-3 must clip off a piece of gasdermin E for the protein to be able to make holes in membranes. Likewise, caspase-3 must also be activated to carry out its job. When Dr. Alnemri and colleagues removed gasdermin E expression from cells, they found activation of caspase-3 was considerably lower. The finding means gasdermin E also acts as another "on" switch for caspase-3. The discovery suggests gasdermin E and caspase-3 engage in a feed-forward loop that accelerates apoptosis, which could help control cancer growth.

To find out if gasdermin E might control cancer growth, the researchers deleted the gene from three cancer cell lines. They found that without gasdermin E, the cancer cells multiplied about twice as fast. The researchers went on to show melanoma cells lack gasdermin E form and grow larger tumors in mice. In contrast, when cancer cells retain gasdermin E expression, they have slower growth.

"We found that cells with gasdermin E grow less and are actually more susceptible to death," says Dr. Alnemri. "They don't form tumors as well either, while the cells that lack this protein form bigger tumors and kill the mice much faster."

The finding suggests gasdermin E limits cancer growth and progression and may serve as a way to tell whether a tumor is fast growing.

"Gasdermin E could be used as a marker to distinguish aggressive tumors from less aggressive ones," says Dr. Alnemri. "Aggressive tumors may have no gasdermin E, but less aggressive ones could have more." Likewise, the information could be used to decide how to design effective strategies to treat cancer.

The findings also suggest gasdermin E may be a cancer therapy target. Many tumors silence the expression of gasdermin E, but chemotherapies such as decitabine that reactivate its expression may be helpful.

Still, which cancers can be kept in check by gasdermin E expression, is an open question, Dr. Alnemri cautions. "Gasdermin E might control cancer growth and work as a biomarker in one type of cancer, but not another," he says.
Article reference: Corey Rogers, Dan A. Erkes, Alexandria Nardone, Andrew E. Aplin, Teresa Fernandes-Alnemri & Emad S. Alnemri, "Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation," Nature Communications,DOI: https://doi.org/10.1038/s41467-019-09397-2, 2019.

Thomas Jefferson University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.