Nav: Home

From coal to gas: How the shift can help stabilize climate change

April 22, 2019

Led by Katsumasa Tanaka, a senior climate risk researcher at the National Institute for Environmental Studies in Japan, the study examined global scenarios for transitioning from coal to gas using a novel approach that applied metrics developed for climate impact assessments to the coal-gas debate for the first time. Focusing on the world's leading power generators--China, Germany, India, and the United States--the study examined the impacts from a variety of direct and indirect emissions of such a shift on both shorter and longer timescales ranging from a few decades to a century.

"Many previous studies were somewhat ambivalent about the climate benefits of the coal-to-gas shift," said Tanaka. "Our study makes a stronger case for the climate benefits that would result from this energy transition, because we carefully chose metrics to evaluate the climate impacts in light of recent advances in understanding metrics."

"Given the current political situation, we deliver a much-needed message to help facilitate the energy shift away from coal under the Paris Agreement," Tanaka said. "However, natural gas is not an end goal; we regard it as a bridge fuel toward more sustainable forms of energy in the long run as we move toward decarbonization."

Concerns about methane leakage from natural gas have been intensely debated, particularly in the United States given the increasing use of fracking over the past decade. Recent scientific efforts have improved understanding of the extent of methane leakage in the United States, but the potential impacts of methane leakage remain highly uncertain in the rest of the world.

"Our conclusion that the benefits of natural gas outweigh the possible risks is robust under a broad range of methane leakage, and under uncertainties in emissions data and metrics," Tanaka said.

This research was partially supported by the Environment Research and Technology Development Fund (2-1702) of the Environmental Restoration and Conservation Agency in Japan, with additional support from the Institute for Advanced Sustainability Studies in Germany and the Research Council of Norway.

Multiple metrics to simultaneously examine short- and long-term climate impacts

Emissions metrics, or indicators to evaluate the impacts to climate change from a variety of emission types, are useful tools to gain insights into climate impacts without the need for climate model runs.

These metrics work like weighting factors when calculating CO2-equivalent emissions from the emissions of a variety of greenhouse gases. However, the resulting climate impacts observed through CO2-equivalent emissions are sensitive to the specific metrics chosen.

"Because the outcome can strongly depend on which metrics are chosen and applied, there is a need for careful reflection about the meaning and implications of each specific choice," said Francesco Cherubini, a professor at the Norwegian University of Science and Technology. "Each emission type elicits a different climate system response. The diverging outcomes in previous studies may well stem from the type of metric that was chosen."

The study combined multiple metrics to address both short- and long-term climate impacts in parallel. It was found that natural gas power plants have both smaller short- and long-term impacts than coal power plants, even when high potential methane leakage rates, a full array of greenhouse gases and air pollutants, or uncertainty issues are considered.

"Our study uses a set of metrics jointly, unlike many studies using just one, to consider climate impacts on different time scales--one metric for a few decades and another one for approximately a century", said Otavio Cavalett, a colleague of Cherubini. "This allowed us to consider the host of pollutants that can affect the climate on different time scales."

"In practice, we used the metrics available from the latest IPCC report and focused on those that are most consistent with the Paris Agreement temperature goals," Cherubini said. The authors' choice of metrics aligned with recent recommendations by the United Nations Environmental Programme and the Society of Environmental Toxicology and Chemistry. It is the first application of such recommendations to the coal-to-gas debate.

Regional differences

To ensure that possible regional differences were accounted for in the global study, the study compared global metrics with regional metrics to more precisely examine impacts.

"We considered a suite of so-called short-lived climate pollutants (SLCPs), such as SOx, NOx, and black carbon, that can be emitted from these plants," said Bill Collins, a professor at the University of Reading, in the United Kingdom. "This required a regional analysis because climate impacts from SLCPs depend on where they are emitted, due to their short lifetimes in the atmosphere."

Future directions and policy relevance

The study by Tanaka and coauthors is part of a growing body of literature that reaffirms the need to phase out coal in order to mitigate rising global temperatures and slow or reverse negative impacts of climate change.

Future related work could consider supply chains and trade within and across nations and other environmental factors, in addition to work on improving the consistency of metrics for evaluating climate impacts.

"Air quality is not part of our analysis, but including it would likely strengthen our conclusion," said Tanaka. Other environmental effects, such as drinking water contamination and induced seismic activities, could also add important dimensions to the debate."
-end-
About the article: Title: Asserting the climate benefits of the coal-to-gas shift across temporal and spatial scales
Authors: Katsumasa Tanaka, Otávio Cavalett, William J. Collins, Francesco Cherubini
Journal: Nature Climate Change, DOI: 10.1038/s41558-019-0457-1

National Institute for Environmental Studies

Related Climate Change Articles:

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
Historical climate important for soil responses to future climate change
Researchers at Lund University in Sweden, in collaboration with colleagues from the University of Amsterdam, examined how 18 years of drought affect the billions of vital bacteria that are hidden in the soil beneath our feet.
Can forests save us from climate change?
Additional climate benefits through sustainable forest management will be modest and local rather than global.
From crystals to climate: 'Gold standard' timeline links flood basalts to climate change
Princeton geologists used tiny zircon crystals found in volcanic ash to rewrite the timeline for the eruptions of the Columbia River flood basalts, a series of massive lava flows that coincided with an ancient global warming period 16 million years ago.
Think pink for a better view of climate change
A new study says pink noise may be the key to separating out natural climate variability from climate change that is influenced by human activity.
Climate taxes on agriculture could lead to more food insecurity than climate change itself
New IIASA-led research has found that a single climate mitigation scheme applied to all sectors, such as a global carbon tax, could have a serious impact on agriculture and result in far more widespread hunger and food insecurity than the direct impacts of climate change.
More Climate Change News and Climate Change Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.