Semiconductor scientists discover effect that was thought impossible

April 22, 2019

A physical effect known as superinjection underlies modern light-emitting diodes (LEDs) and lasers. For decades this effect was believed to occur only in semiconductor heterostructures -- that is, structures composed of two or more semiconductor materials. Researchers from the Moscow Institute of Physics and Technology have found superinjection to be possible in homostructures, which are made of a single material. This opens up entirely new prospects for the development of light sources. The paper came out Feb. 21 in the journal Semiconductor Science and Technology.

Semiconductor light sources, such as lasers and LEDs, are at the core of modern technology. They enable laser printers and high-speed internet. But a mere 60 years ago, no one would imagine semiconductors being used as materials for bright light sources. The problem was that to generate light, such devices require electrons and holes -- the free charge carriers in any semiconductor -- to recombine. The higher the concentration of electrons and holes, the more often they recombine, making the light source brighter. However, for a long time, no semiconductor device could be manufactured to provide a sufficiently high concentration of both electrons and holes.

The solution was found in the 1960s by Zhores Alferov and Herbert Kroemer. They proposed to use heterostructures, or "sandwich" structures, consisting of two or more complementary semiconductors instead of just one. If one places a semiconductor between two semiconductors with wider bandgaps and applies a forward bias voltage, the concentration of electrons and holes in the middle layer can reach values that are orders of magnitude higher than those in the outer layers. This effect, known as superinjection, underlies modern semiconductor lasers and LEDs. Its discovery earned Alferov and Kroemer the Nobel Prize in physics in 2000.

However, two arbitrary semiconductors cannot make a viable heterostructure. The semiconductors need to have the same period of the crystal lattice. Otherwise, the number of defects at the interface between the two materials will be too high, and no light will be generated. In a way, this would be similar to trying to screw a nut on a bolt whose thread pitch does not match that of the nut. Since homostructures are composed of just one material, one part of the device is a natural extension of the other. Although homostructures are easier to fabricate, it was believed that homostructures could not support superinjection and therefore are not a viable basis for practical light sources.

Igor Khramtsov and Dmitry Fedyanin from the Moscow Institute of Physics and Technology made a discovery that drastically changes the perspective on how light-emitting devices can be designed. The physicists found that it is possible to achieve superinjection with just one material. What is more, most of the known semiconductors can be used.

"In the case of silicon and germanium, superinjection requires cryogenic temperatures, and this casts doubt on the utility of the effect. But in diamond or gallium nitride, strong superinjection can occur even at room temperature," Dr. Fedyanin said. This means that the effect can be used to create mass market devices. According to the new paper, superinjection can produce electron concentrations in a diamond diode that are 10,000 times higher than those previously believed to be ultimately possible. As a result, diamond can serve as the basis for ultraviolet LEDs thousands of times brighter than what the most optimistic theoretical calculations predicted. "Surprisingly, the effect of superinjection in diamond is 50 to 100 times stronger than that used in most mass market semiconductor LEDs and lasers based on heterostructures," Khramtsov pointed out.

The physicists emphasized that superinjection should be possible in a wide range of semiconductors, from conventional wide-bandgap semiconductors to novel two-dimensional materials. This opens up new prospects for designing highly efficient blue, violet, ultraviolet, and white LEDs, as well as light sources for optical wireless communication (Li-Fi), new types of lasers, transmitters for the quantum internet, and optical devices for early disease diagnostics.
-end-
The study was supported by the Russian Science Foundation (17-79-20421).

Original research paper: I.A. Khramtsov, D.Yu. Fedyanin, Superinjection in diamond homojunction P-I-N diodes, Semiconductor Science and Technology 34, 03LT03 (2019).

Moscow Institute of Physics and Technology

Related Semiconductor Articles from Brightsurf:

Blue phosphorus: How a semiconductor becomes a metal
Blue phosphorus, an atomically thin synthetic semiconductor, becomes metallic as soon as it is converted into a double layer.

A new method to measure optical absorption in semiconductor crystals
Tohoku University researchers have revealed more details about omnidirectional photoluminescence (ODPL) spectroscopy - a method for probing semiconducting crystals with light to detect defects and impurities.

Medical robotic hand? Rubbery semiconductor makes it possible
A medical robotic hand could allow doctors to more accurately diagnose and treat people from halfway around the world, but currently available technologies aren't good enough to match the in-person experience.

Laser allows solid-state refrigeration of a semiconductor material
A team from the University of Washington used an infrared laser to cool a solid semiconductor by at least 20 degrees C, or 36 F, below room temperature, as they report in a paper published June 23 in Nature Communications.

Scientists create smallest semiconductor laser
An international team of researchers announced the development of the world's most compact semiconductor laser that works in the visible range at room temperature.

Clemson researcher's novel MOF is potential next-gen semiconductor
Clemson professor Sourav Saha demonstrated a novel double-helical metal organic framework architecture in a partially oxidized form that conducts electricity, potentially making it a next-generation semiconductor.

A gold butterfly can make its own semiconductor skin
A nanoscale gold butterfly provides a more precise route for growing/synthesizing nanosized semiconductors that can be used in nano-lasers and other applications.

Scientists pioneer new generation of semiconductor neutron detector
In a new study, scientists have developed a new type of semiconductor neutron detector that boosts detection rates by reducing the number of steps involved in neutron capture and transduction.

Scientists see defects in potential new semiconductor
A research team has reported seeing, for the first time, atomic scale defects that dictate the properties of a new and powerful semiconductor.

Bending an organic semiconductor can boost electrical flow
Slightly bending semiconductors made of organic materials can roughly double the speed of electricity flowing through them and could benefit next-generation electronics such as sensors and solar cells, according to Rutgers-led research.

Read More: Semiconductor News and Semiconductor Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.