How slippery surfaces allow sticky pastes and gels to slide

April 22, 2019

An MIT research team that has already conquered the problem of getting ketchup out of its bottle has now tackled a new category of consumer and manufacturing woe: how to get much thicker materials to slide without sticking or deforming.

The slippery coatings the team has developed, called liquid-impregnated surfaces, could have numerous advantages, including eliminating production waste that results from material that sticks to the insides of processing equipment. They might also improve the quality of products ranging from bread to pharmaceuticals, and even improve the efficiency of flow batteries, a rapidly developing technology that could help to foster renewable energy by providing inexpensive storage for generated electricity.

These surfaces are based on principles initially developed to help foods, cosmetics, and other viscous liquids slide out of their containers, as devised by Kripa Varanasi, a professor of mechanical engineering at MIT, along with former students Leonid Rapoport PhD '18 and Brian Solomon PhD '16. The new work is described in the journal ACS Applied Materials and Interfaces.

Like the earlier surfaces they developed, which led to the creation of a spinoff company called LiquiGlide, the new surfaces are based on a combination of a specially textured surface and a liquid lubricant that coats the surface and remains trapped in place through capillary action and other intermolecular forces associated with such interfaces. The new paper explains the fundamental design principles that can achieve almost 100 percent friction reduction for these gel-like fluids.

Needing a squeeze

Such materials, known as yield-stress fluids, including gels and pastes, are ubiquitous. They can be found in consumer products such as food, condiments, and cosmetics, and in products in the energy and pharmaceuticals industries. Unlike other fluids such as water and oils, these materials will not start to flow on their own, even when their container is turned upside down. Starting the flow requires an input of energy, such as squeezing the container.

But that squeezing has its own effects. For example, bread-making machinery typically includes scrapers that constantly push the sticky dough away from the sides of its container, but that constant scraping can result in over-kneading and a denser loaf. A slippery container that requires no scraping could thus produce better-tasting bread, Varanasi says. By using this system, "beyond getting everything out of the container, you now add higher quality" of the resulting product.

That may not be critical where bread is concerned, but it can have great impact on pharmaceuticals, he says. The use of mechanical scrapers to propel drug materials through mixing tanks and pipes can interfere with the effectiveness of the medicine, because the shear forces involved can damage the proteins and other active compounds in the drug.

By using the new coatings, in some cases it's possible to achieve a 100 percent reduction in the drag the material experiences -- equivalent to "infinite slip," Varanasi says.

"Generally speaking surfaces are enablers," says Rapoport. "Superhydrophobic surfaces, for example, enable water to roll easily, but not all fluids can roll. Our surfaces enable fluids to move by whichever way is more preferable for them -- be it rolling or sliding. In addition we found that yield-stress fluids can move on our surfaces without shearing, essentially sliding like solid bodies. This is very important when you want to maintain the integrity of these materials when they are being processed."

Like the earlier version of slippery surfaces Varanasi and his collaborators created, the new process begins by making a surface that is textured at the nanoscale, either by etching a series of closely spaced pillars or walls on the surface, or mechanically grinding grooves or pits. The resulting texture is designed to have such tiny features that capillary action -- the same process that allows trees to draw water up to their highest branches through tiny openings beneath the bark -- can act to hold a liquid, such as a lubricating oil, in place on the surface. As a result, any material inside a container with this kind of lining essentially only comes in contact with the lubricating liquid, and slides right off instead of sticking to the solid container wall.

The new work described in this paper details the principles the researchers came up with to enable the optimal selection of surface texturing, lubricating material, and manufacturing process for any specific application with its particular combination of materials.

Helping batteries to flow

Another important application for the new coatings is in a rapidly developing technology called flow batteries. In these batteries, solid electrodes are replaced by a slurry of tiny particles suspended in liquid, which has the advantage that the capacity of the battery can be increased at any time simply by adding bigger tanks. But the efficiency of such batteries can be limited by the flow rates.

Using the new slippery coatings could significantly boost the overall efficiency of such batteries, and Varanasi worked with MIT professors Gareth McKinley and Yet-Ming Chiang on developing such a system led by Solomon and Xinwei Chen, a former postdoc in Chiang's lab.

These coatings could resolve a conundrum that flow battery designers have faced, because they needed to add carbon to the slurry material to improve its electrical conductivity, but the carbon also made the slurry much thicker and interfered with its movement, leading to "a flow battery that couldn't flow," Varanasi says.

"Previously flow batteries had a trade-off in that as you add more carbon particles the slurry becomes more conductive, but it also becomes thicker and much more challenging to flow," says Solomon. "Using slippery surfaces lets us have the best of both worlds by allowing flow of thick, yield-stress slurries."

The improved system allowed the use of a flow electrode formulation that resulted in a fourfold increase in capacity and an 86 percent savings in mechanical power, compared with the use of traditional surfaces. These results were described recently in the journal ACS Applied Energy Materials.

"Apart from fabricating a flow battery device which incorporates the slippery surfaces, we also laid out design criteria for their electrochemical, chemical, and thermodynamic stability," explains Solomon. "Engineering surfaces for a flow battery opens up an entirely new branch of applications that can help meet future energy storage demand."
-end-
The research was supported by the Joint Center for Energy Storage Research, an Energy Research Hub funded by the U.S. Department of Energy, and by the Martin Family Society of Fellows for Sustainability.

Related links

PAPER: "Mobility of Yield-Stress Fluids on Lubricant-Impregnated Surfaces."

ARCHIVE: A new way to remove ice buildup without power or chemicals

ARCHIVE: New approach makes sprayed droplets hit and stick to their targets

ARCHIVE: Let it rain! New coatings make natural fabrics waterproof

ARCHIVE: New system recovers fresh water from power plants

ARCHIVE: LiquiGlide slides into consumer space

Massachusetts Institute of Technology

Related Batteries Articles from Brightsurf:

New research says Sodium-ion batteries are a valid alternative to Lithium-ion batteries
A team of scientists including WMG at the University of Warwick combined their knowledge and expertise to assess the current status of the Na-ion technology from materials to cell development, offering a realistic comparison of the key performance indicators for NBs and LIBs.

Fast calculation dials in better batteries
A simpler and more efficient way to predict the performance of batteries will lead to better batteries, according to Rice University engineers.

Building the batteries of cells
A new study, led by Dr. Ruchika Anand and Prof.

Researchers create a roadmap to better multivalent batteries
Lithium-ion batteries power everything from mobile phones to laptop computers and electric vehicles, but demand is growing for less expensive and more readily available alternatives.

New NiMH batteries perform better when made from recycled old NiMH batteries
A new method for recycling old batteries can provide better performing and cheaper rechargeable hydride batteries (NiMH) as shown in a new study by researchers at Stockholm University.

Seeing 'under the hood' in batteries
A high-sensitivity X-ray technique at Berkeley Lab is attracting a growing group of scientists because it provides a deep, precise dive into battery chemistry.

Better, safer batteries
For the first time, researchers who explore the physical and chemical properties of electrical energy storage have found a new way to improve lithium-ion batteries.

New catalyst provides boost to next-generation EV batteries
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has introduced a new composite catalyst that could efficiently enhance the charg-discharge performances when applied to metal-air batteries (MABs).

New lithium batteries from used cell phones
Research from the University of Cordoba (Spain) and San Luis University (Argentina) was able to reuse graphite from cell phones to manufacture environmentally friendly batteries.

Safe potassium-ion batteries
Australian scientists have developed a nonflammable electrolyte for potassium and potassium-ion batteries, for applications in next-generation energy-storage systems beyond lithium technology.

Read More: Batteries News and Batteries Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.