Spider combs tame unruly nanofibers (video)

April 22, 2020

Cribellate spiders spin thousands of tiny nanofibers into sticky threads. To keep from getting caught in their own webs, these spiders use a nonstick comb on their back legs. Now, researchers reporting in ACS Applied Nano Materials have patterned an antiadhesive nanostructure inspired by this comb onto a foil surface, creating a handy tool to control sticky lab-made nanomaterials for medical, smart textile and other applications. Watch a video of the combs in action here.

Unlike most spiders, which produce silk coated in a sticky glue, cribellate spiders' threads resemble a bristly wool that embeds into the bodies of their prey. During web-making, the spider's comb, or calamistrum, grabs onto the nanofibers emerging from its abdomen and assembles them into threads. Anna-Christin Joel and colleagues wondered why the sticky nanofibers don't cling to the spider's comb. They figured that the answer could reveal new strategies for handling synthetic nanomaterials and nanofibers, which can be tacky.

The researchers began by shaving off the calamistrum from a group of "lace weaver" spiders. In contrast to normal spiders, those lacking combs showed a buildup of nanofibers where the comb should have been. The team also observed that in normal spiders, the surface of the comb was covered with fingerprint-like nanoripples. They found that this structure prevents nanofibers from closely contacting the surface of the spider's leg in the region of the comb, reducing adhesive van der Waals forces. To make an artificial nonstick surface inspired by the spiders' combs, the researchers used lasers to pattern similar nanostructures onto poly(ethylene terephthalate) (PET) foils and then coated the foils with gold. When tested for antiadhesive properties against spider silk, the artificial comb performed almost as well as the natural version.

The authors acknowledge funding from the European Union's Horizon 2020 research and innovation program, the Excellence Initiative of the German federal and state governments and the Deutsche Forschungsgemainschaft.

The abstract that accompanies this article can be viewed here.

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS' mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and its people. The Society is a global leader in providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a specialist in scientific information solutions (including SciFinder® and STN®), its CAS division powers global research, discovery and innovation. ACS' main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter | Facebook
-end-


American Chemical Society

Related Spiders Articles from Brightsurf:

Environmental factors affect the distribution of Iberian spiders
Southern small-leaved oak forests are the habitats with a higher level of spider endemism in the Iberian Peninsula, according to an article published in the journal Biodiversity and Conservation.

These spiders can hear
Ogre-faced spiders hide during the day and hunt by night, dangling from palm fronds and casting nets on insects.

Untangling the social lives of spiders
Scientists begin to unravel the genetic mechanism by which a solitary spider becomes a social one.

Freshwater insects recover while spiders decline in UK
Many insects, mosses and lichens in the UK are bucking the trend of biodiversity loss, according to a comprehensive analysis of over 5,000 species led by UCL and the UK Centre for Ecology & Hydrology (UKCEH), and published in Nature Ecology & Evolution.

Cave fights for food: Voracious spiders vs. assassin bugs
Killing and eating of potential competitors has rarely been documented in the zoological literature, even though this type of interaction can affect population dynamics.

Spiders and ants inspire a metallic structure that refuses to sink
University of Rochester researchers have created a metallic structure that is so hydrophobic, it refuses to sink - no matter how often it is forced into water or how much it is damaged or punctured.

Compact depth sensor inspired by spiders
Inspired by jumping spiders, researchers at the Harvard John A.

Researchers find hurricanes drive the evolution of more aggressive spiders
Researchers at McMaster University who rush in after storms to study the behavior of spiders have found that extreme weather events such as tropical cyclones may have an evolutionary impact on populations living in storm-prone regions, where aggressive spiders have the best odds of survival.

Baby spiders really are watching you
Baby jumping spiders can hunt prey just like their parents do because they have vision nearly as good.

Solitude breeds aggression in spiders (rather than vice versa)
Spiders start out social but later turn aggressive after dispersing and becoming solitary, according to a study publishing July 2 in the open-access journal PLOS Biology by Raphael Jeanson of the National Centre for Scientific Research (CNRS) in France, and colleagues.

Read More: Spiders News and Spiders Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.