Researchers discover a key to the survival of dormant breast cancer cells

April 22, 2020

LEBANON, NH - Most breast cancers utilize the female hormone estrogen to grow, so drug-induced estrogen deprivation is used as a treatment in many patients. However, cancer will recur in one-third of these patients. A research team at Dartmouth's and Dartmouth-Hitchcock's Norris Cotton Cancer Center, led by Todd W. Miller, PhD, is trying to understand why dormant breast cancer cells survive despite being starved of estrogen. The team discovered that an anti-diabetes drug, metformin, which is being tested in many clinical trials as an anti-cancer agent, actually activated fat metabolism that protected dormant breast cancer cells during estrogen deprivation. The findings suggest that the drug has context-dependent effects on cancer cells. The results, entitled "AMPK activation by metformin promotes survival of dormant ER+ breast cancer cells," are newly published online in Clinical Cancer Research, a journal of the American Association for Cancer Research.

Metformin activates AMPK, which is a metabolic sensor that signals cells to make energy. Miller's team found that breast cancer cells survived estrogen deprivation through activation of AMPK. "A major output of AMPK is activation of fat breakdown to produce energy, which we observed in dormant cancer cells," says Miller. "Drugs that block fat breakdown are used to treat patients with angina (chest pain). Treatment of mice with anti-angina drugs decreased dormant cancer cell numbers."

Knowledge that metformin has context-dependent effects on cancer cells will inform a better understanding of ongoing and prior clinical trials testing metformin, and help shape the design of trials moving forward. "Our study indicates that the development of drugs targeting fat metabolism is warranted for breast cancer. Most excitingly, anti-angina drugs that block fat metabolism may be quickly repurposed as potential treatments for cancer and tested in clinical trials," says Miller.

Next steps include clinical trials testing drugs that block fat metabolism in breast cancer. "We're also designing preclinical studies to further dissect the roles of fat metabolism in breast and other cancers, with the goal of identifying more refined therapeutic targets that will selectively kill cancer cells and not harm healthy cells," notes Miller.
-end-
Todd W. Miller, PhD, is Co-Director of the Cancer Biology & Therapeutics Research Program and Scientific Director of the Comprehensive Breast Program at Dartmouth's and Dartmouth-Hitchcock's Norris Cotton Cancer Center, and Associate Professor of Molecular and Systems Biology at the Geisel School of Medicine at Dartmouth. His research interests include identification of cancer signaling pathways and the development of targeted therapies for breast and other cancers. geiselmed.dartmouth.edu/miller. @DartmouthLab.

About Norris Cotton Cancer Center

Norris Cotton Cancer Center, located on the campus of Dartmouth-Hitchcock Medical Center (DHMC) in Lebanon, NH, combines advanced cancer research at Dartmouth College's Geisel School of Medicine in Hanover, NH with the highest level of high-quality, innovative, personalized, and compassionate patient-centered cancer care at DHMC, as well as at regional, multi-disciplinary locations and partner hospitals throughout NH and VT,. NCCC is one of only 51 centers nationwide to earn the National Cancer Institute's prestigious "Comprehensive Cancer Center" designation, the result of an outstanding collaboration between DHMC, New Hampshire's only academic medical center, and Dartmouth College. Now entering its fifth decade, NCCC remains committed to excellence, outreach and education, and strives to prevent and cure cancer, enhance survivorship and to promote cancer health equity through its pioneering interdisciplinary research. Each year the NCCC schedules 61,000 appointments seeing nearly 4,000 newly diagnosed patients, and currently offers its patients more than 100 active clinical trials.

Dartmouth-Hitchcock Medical Center

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.