Nav: Home

Disappearing Alaskan sea ice is significant for Arctic marine ecosystem

April 22, 2020

SOLOMONS, MD (April 22, 2020)--A new study shows that plant materials originating in Arctic sea ice are significantly incorporated into marine food webs that are used for subsistence in local communities of the greater Bering Strait region.

The study led by scientists from the University of Maryland Center for Environmental Science traced persistent biological compounds that are uniquely generated by microscopic plants in sea ice and found that the compounds are present throughout the base of the food web. The research has the potential to demonstrate the importance of sea ice ecosystems as a source of food in Arctic waters in Alaska and beyond.

"It is widely thought that the loss of sea ice habitat will have far-reaching implications for Arctic ecosystems," said lead author Chelsea Wegner Koch, a graduate research assistant and the University of Maryland Center for Environmental Science.

"As sea ice breakup occurs earlier and forms later each year, the open water period is expanding and the sources of food are shifting away from sea ice and towards greater proportions of open water production. This production in the absence of sea ice differs in the quality, quantity, and timing of delivery to the seafloor," she said.

Efforts to account for the proportional shifts in contributions of ice algae have been incomplete due to the lack of a specific tracer that can be definitively assigned to ice algae rather than open-water phytoplankton. The compounds reaching the seafloor that were studied are associated with food for a range of seafloor animals that in turn provide food for ecologically and culturally important organisms, such as the bearded seal, Pacific walrus, gray whale and spectacled eider that forage on the shallow sea floor.

The study, published in the journal PLOS ONE with scientists from Clark University, Université Laval, and the Scottish Association for Marine Science, used sediment samples collected in the field during research cruises in the Bering and Chukchi seas, as well as samples collected from an automated under-ice moored sediment trap that operates over the winter offshore of Wainwright on Alaska's North Slope.

Findings showed a transition to more dependence on sea ice materials in direct relation to sea ice coverage, but that the sea ice biomarkers persisted year-round and were primarily released as snow melted on the sea ice coverage present in the winter.

"Particularly as sea ice coverage decreases--and in recent years has become negligible in the north Bering Sea--we are entering a new era where we will have to use approaches such as this to evaluate how the ecosystem will obtain the basic building blocks needed to sustain the food web, including human communities that depend upon them for food security," said Koch.

The study also showed that ice-sourced food rapidly reaches the seafloor sediments, suggesting that when significant ice cover is present in the winter and spring, long-term reserves of organic matter can remain accessible to seafloor animals even if production declines.

"These reserves may buffer shifting food sources in the near-term for organisms that live within the surface sediments but are likely to become inaccessible in the future if current sea ice declines continue," said Koch.

The study shows that in the northern Bering Sea, the sea ice biomarkers indicate comparatively minimal inputs of ice algae in recent years and a more open water-dominated system that will favor different organisms than have persisted in this region in the past. One final implication of the work is that it also can be potentially used to provide regional insights into paleoclimate indications of sea ice cover since the sea ice compounds persist in the sediments.

"By incorporating the extensive existing datasets of the physics and chemistry of the region, we can potentially improve interpretations of the sea ice biomarker dynamics to reveal changes in sea ice but also productivity relevant to long-term climate studies in the region," said Koch.
-end-
This research was primarily funded by the National Science Foundation and National Oceanic and Atmospheric Administration.

"Seasonal and latitudinal variations in sea ice algae deposition in the Northern Bering and Chukchi Seas determined by algal biomarkers" was published in PLOS ONE by Chelsea Wegner Koch, Lee Cooper, and Jacqueline Grebmeier of the University of Maryland Center for Environmental Science; Thomas Brown of Scottish Association for Marine Science; Catherine Lalande of Universite; Laval; and Karen Frey of Clark University.

UNIVERSITY OF MARYLAND CENTER FOR ENVIRONMENTAL SCIENCE

A globally eminent research and graduate institution focused on advancing scientific knowledge of the environment, the University of Maryland Center for Environmental Science provides sound advice to help state and national leaders manage the environment and prepares future scientists to meet the global challenges of the 21st century. http://www.umces.edu

University of Maryland Center for Environmental Science

Related Sea Ice Articles:

A snapshot of melting Arctic sea ice during the summer of 2018
A study appearing July 29 in the journal Heliyon details the changes that occurred in the Arctic in September of 2018, a year when nearly 10 million kilometers of sea ice were lost throughout the summer.
Antarctic penguins happier with less sea ice
Researchers have been surprised to find that Adélie penguins in Antarctica prefer reduced sea-ice conditions, not just a little bit, but a lot.
Seasonal sea ice changes hold clues to controlling CO2 levels, ancient ice shows
New research has shed light on the role sea ice plays in managing atmospheric carbon dioxide levels.
Artificial intelligence could revolutionize sea ice warnings
Today, large resources are used to provide vessels in the polar seas with warnings about the spread of sea ice.
Antarctic sea ice loss explained in new study
Scientists have discovered that the summer sea ice in the Weddell Sea sector of Antarctica has decreased by one million square kilometres -- an area twice the size of Spain -- in the last five years, with implications for the marine ecosystem.
Antarctic sea-ice models improve for the next IPCC report
All the new coupled climate models project that the area of sea ice around Antarctica will decline by 2100, but the amount of loss varies considerably between the emissions scenarios.
Earth's glacial cycles enhanced by Antarctic sea-ice
A 784,000 year climate simulation suggests that Southern Ocean sea ice significantly reduces deep ocean ventilation to the atmosphere during glacial periods by reducing both atmospheric exposure of surface waters and vertical mixing of deep ocean waters; in a global carbon cycle model, these effects led to a 40 ppm reduction in atmospheric CO2 during glacial periods relative to pre-industrial level, suggesting how sea ice can drive carbon sequestration early within a glacial cycle.
Arctic sea ice can't 'bounce back'
Arctic sea ice cannot 'quickly bounce back' if climate change causes it to melt, new research suggests.
Cracks in Arctic sea ice turn low clouds on and off
The prevailing view has been that more leads are associated with more low-level clouds during winter.
Evidence: Antarctica's thinning ice shelves causing more ice to move from land into sea
New study provides the first evidence that thinning ice shelves around Antarctica are causing more ice to move from the land into the sea.
More Sea Ice News and Sea Ice Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.