The spring in your step is more than just a good mood

April 23, 2008

ANN ARBOR, Mich.---Scientists using a bionic boot found that during walking, the ankle does about three times the work for the same amount of energy compared to isolated muscles---in other words, the spring in your step is very real and helps us move efficiently.

While much has been done measuring the efficiency of individual muscles, this is the first known study to measure the energy efficiency of a body part such as the ankle, said Daniel Ferris, associate professor with the University of Michigan Division of Kinesiology and lead researcher on the project.

The results suggest manufacturers should rethink prosthesis design so the ankle part can do more of the work, said Ferris, who also holds an appointment in the Department of Biomedical Engineering. It also sheds light on why rehabilitation and mobility is so exhausting for people with unhealthy ankles or neurologic problems.

Greg Sawicki, a graduate student working with Ferris and now at Brown University, built a bionic ankle equipped with fake muscles that mimic real muscle activity in the ankle, Ferris said.

Healthy subjects wore two of the boots, which were attached to the nervous system by electrodes. Sawicki measured the amount of oxygen consumed when walking with or without the boot and compared the two. Muscles use oxygen when they burn fuel, which means the more oxygen used the more energy expended, Ferris said.

"The ankle is incredibly efficient at working so the amount of energy you burn with the ankle is much lower than what would be predicted with just isolated muscle studies," Ferris said.

Researchers suspect this is largely because the Achilles tendon is so long and compliant, and is able to store and return energy during the stride cycle.

Amputees and people with neurologic disorders don't have the "bounce" of the stored energy in the ankle, Ferris said.

"For amputees, we need to come up with a better way for them to have a powered push off at the ankle," Ferris said.

An example of this for running is the prosthetic used by controversial Olympic hopeful Oscar Pistorius, a double-amputee who wears a special curved blade called a Cheetah. As the blade compresses on strides it stores energy, which is released during push off, similar to a human ankle.

However, the Cheetah is great for sprinting but would not work for walking. The foot is on the ground too long to take advantage of the energy return during walking. The muscle and tendon act more like a catapult during walking, storing energy slowly and releasing it at just the right moment.

The next step, Ferris said, is to build a bionic hip and measure the efficiency of the hip during walking.
-end-
For more on the Division of Kinesiology, visit: www.kines.umich.edu/

For more on Ferris, visit: www.kines.umich.edu/faculty/full-time/ferris.html

EDITORS: Click to watch and link to video or copy/paste URL into browser: http://umich.edu/news/index.html?Vid/bionicboot

University of Michigan

Related Walking Articles from Brightsurf:

Why walking to work may be better for you than a casual stroll
Walking with a purpose -- especially walking to get to work -- makes people walk faster and consider themselves to be healthier, a new study has found.

Spinal cord gives bio-bots walking rhythm
Miniature biological robots are making greater strides than ever, thanks to the spinal cord directing their steps.

These feet were made for walking
Many of us take our feet for granted, but they have a challenging job in the biomechanics department.

Walking sharks discovered in the tropics
Four new species of tropical sharks that use their fins to walk are causing a stir in waters off northern Australia and New Guinea.

Micro implants could restore standing and walking
Researchers at the University of Alberta are focused on restoring lower-body function after severe spinal injuries using a tiny spinal implant.

Walking changes vision
When people walk around, they process visual information differently than at rest: the peripheral visual field shows enhanced processing.

Virtual walking system for re-experiencing the journey of another person
Virtual-reality researchers have developed a virtual-walking system that records a person's walking and re-plays it with vision and foot vibrations.

A large study indicates how cities can promote walking for travel
Coinciding with the European Mobility Week, a study performed in seven European cities focuses on walking for travel, a strategy to increase physical activity in cities.

Robotic cane shown to improve stability in walking
By adding electronics and computation technology to a simple cane that has been around since ancient times, Columbia Engineering researchers have transformed it into a 21st century robotic device that can provide light-touch assistance in walking to the aged and others with impaired mobility.

Water walking -- The new mode of rock skipping
Utah State University's Splash Lab not only reveals the physics of how elastic spheres interact with water, but it also lays the foundation for the future design of water-walking drones.

Read More: Walking News and Walking Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.