Scientists study 'glaciovolcanoes,' mountains of fire and ice, in Iceland, British Columbia, US

April 23, 2010

Glaciovolcanoes, they're called, these rumbling mountains where the orange-red fire of magma meets the frozen blue of glaciers.

Iceland's Eyjafjallajökull volcano, which erupted recently, is but one of these volcanoes. Others, such as Katla, Hekla and Askja in Iceland; Edziza in British Columbia, Canada; and Mount Rainier and Mount Redoubt in the U.S., are also glaciovolcanoes: volcanoes covered by ice.

"When an ice-covered volcano erupts, the interplay among molten magma, ice and meltwater can have catastrophic results," says Sonia Esperanca, program director in the National Science Foundation (NSF)'s Division of Earth Sciences, which funds research on glaciovolcanoes.

In Iceland last week, scientists were well prepared for the floods, called "jökulhlaups," that can happen after a glaciovolcano blows and melts its glacial covering. The floods were followed by tons of ash ejected into the atmosphere.

Most of the rest of the world, however, was unaware that an eruption from a small, northern island in the middle of the Atlantic Ocean could freeze air transportation and stop global commerce in its tracks.

That, say NSF-funded scientists Ben Edwards at Dickinson College and Ian Skilling at the University of Pittsburgh, is the nature of glaciovolcanoes.

Understanding volcano-ice interactions occupies much of Edwards' and Skilling's daily lives.

They're working at Mt. Edziza in British Columbia, Canada, and in Iceland to find out how glaciovolcanic deposits--rock fragments strewn for miles after an ice-covered volcano erupts--are formed.

Volcano-ice interaction presents unique types of hazards, say the geologists, but what's left behind after an eruption can also serve as a window into our geologic past.

Studies of glaciovolcanoes' deposits are helping scientists get a better handle on Earth's long-term climate cycles. The volcanic shards are "proxies" for climates of the past.

A key to using these rocks as proxies is the ability to correctly interpret fragmentation of lava and other textural and chemical features. From these, scientists estimate snow and ice thicknesses before and during a glaciovolcano's eruption. The quantity of ash and flowing lava changes as the eruption progresses, until magma stops being formed.

Glaciovolcanic deposits are identifiable long after an eruption ends. Pillow lava, for example, which usually forms on the ocean floor, is sometimes found high atop mountains in British Columbia and Iceland, and in the Antarctic.

These round tubes of fossilized lava, coated with shiny black volcanic glass, are indications of volcanoes that once erupted beneath ice or water.

By noting the elevation of pillow lavas on mountains or high ridges, geologists can better determine the thickness of surrounding ice.

"Pillow lavas might well be forming right now in the ice-bound caverns on top of Eyjafjallajökull," says Edwards. "By analyzing the gas content dissolved in pillow lavas' glass, we can also estimate the thickness of the overlying ice at the time of their formation."

When hot lava melts ice quickly, water can mix with magma, flash to steam, and produce powerful explosions of fine volcanic ash, according to Edwards.

"These fine particles can be carried much higher into the atmosphere than ash from similar 'dry' eruptions," he says.

When superheated fragments of liquid magma hit cold air, they freeze into billions and billions of particles, driven into the atmosphere by the power of the volcano's eruption.

"Although studies of glaciovolcanism are currently focused on longer-term questions of climate change, the research is helping scientists understand all active and dormant ice-covered volcanoes, including many in North America," says Esperanca.

Several volcanoes in the Cascades, such as Mount Rainier, and volcanoes in Alaska, like the recently active Mount Redoubt, have significant ice cover.

Research on the links between these volcanoes and their ice-covered surfaces is giving scientists and emergency planners critical information.

"We need more studies of present and old eruptions to be prepared to respond to a volcano-ice crisis in North America--or elsewhere around the globe," says Esperanca.

While many geologists are using Iceland as an important way to inform the public about possible dangers from volcanoes, glaciovolcanologists are chomping at their rock hammers--and ice chisels.

They're waiting for Eyjafjallajökull to take a rest. Then they can creep ever closer, eventually getting a look at newly formed glaciovolcanic deposits.

To Edwards and Skilling, the eruption of Eyjafjallajökull shows how complex the dance of a volcano and a glacier can be.
-end-


National Science Foundation

Related Volcano Articles from Brightsurf:

Using a volcano's eruption 'memory' to forecast dangerous follow-on explosions
Stromboli, the 'lighthouse of the Mediterranean', is known for its low-energy but persistent explosive eruptions, behaviour that is known scientifically as Strombolian activity.

Rebirth of a volcano
Continued volcanic activity after the collapse of a volcano has not been documented in detail so far.

Optical seismometer survives "hellish" summit of Caribbean volcano
The heights of La Soufrière de Guadeloupe volcano can be hellish, sweltering at more than 48 degrees Celsius (120 degrees Fahrenheit) and swathed in billows of acidic gas.

Researchers reveal largest and hottest shield volcano on Earth
Researchers from the University of Hawai'i at Mānoa revealed the largest and hottest shield volcano on Earth--Pūhāhonu, a volcano within the Papahānaumokuākea Marine National Monument.

Formation of a huge underwater volcano offshore the Comoros
A submarine volcano was formed off the island of Mayotte in the Indian Ocean in 2018.

Volcano F is the origin of the floating stones
Since August a large accumulation of pumice has been drifting in the Southwest Pacific towards Australia.

Researchers discover a new, young volcano in the Pacific
Researchers from Tohoku University have discovered a new petit-spot volcano at the oldest section of the Pacific Plate.

What happens under the Yellowstone Volcano
A recent study by Bernhard Steinberger of the German GeoForschungsZentrum and colleagues in the USA helps to better understand the processes in the Earth's interior beneath the Yellowstone supervolcano.

Geoengineering versus a volcano
Major volcanic eruptions spew ash particles into the atmosphere, which reflect some of the Sun's radiation back into space and cool the planet.

How to recognize where a volcano will erupt
Eleonora Rivalta and her team from the GFZ German Research Centre for Geosciences in Potsdam, together with colleagues from the University Roma Tre and the Vesuvius Observatory of the Italian Istituto Nazionale di Geofisica e Vulcanologia in Naples have devised a new method to forecast volcanic vent locations.

Read More: Volcano News and Volcano Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.