Nav: Home

New sensor detects rare metals used in smartphones

April 23, 2019

A more efficient and cost-effective way to detect lanthanides, the rare earth metals used in smartphones and other technologies, could be possible with a new protein-based sensor that changes its fluorescence when it binds to these metals. A team of researchers from Penn State developed the sensor from a protein they recently described and subsequently used it to explore the biology of bacteria that use lanthanides. A study describing the sensor appears online in the Journal of the American Chemical Society.

"Lanthanides are used in a variety of current technologies, including the screens and electronics of smartphones, batteries of electric cars, satellites, and lasers," said Joseph Cotruvo, Jr., assistant professor and Louis Martarano Career Development Professor of Chemistry at Penn State and senior author of the study. "These elements are called rare earths, and they include chemical elements of atomic weight 57 to 71 on the periodic table. Rare earths are challenging and expensive to extract from the environment or from industrial samples, like waste water from mines or coal waste products. We developed a protein-based sensor that can detect tiny amounts of lanthanides in a sample, letting us know if it's worth investing resources to extract these important metals."

The research team reengineered a fluorescent sensor used to detect calcium, substituting the part of the sensor that binds to calcium with a protein they recently discovered that is several million times better at binding to lanthanides than other metals. The protein undergoes a shape change when it binds to lanthanides, which is key for the sensor's fluorescence to "turn on."

"The gold standard for detecting each element that is present in a sample is a mass spectrometry technique called ICP-MS," said Cotruvo. "This technique is very sensitive, but it requires specialized instrumentation that most labs don't have, and it's not cheap. The protein-based sensor that we developed allows us to detect the total amount of lanthanides in a sample. It doesn't identify each individual element, but it can be done rapidly and inexpensively at the location of sampling."

The research team also used the sensor to investigate the biology of a type of bacteria that uses lanthanides--the bacteria from which the lanthanide-binding protein was originally discovered. Earlier studies had detected lanthanides in the bacteria's periplasm--a space between membranes near the outside of the cell--but, using the sensor, the team also detected lanthanides in the bacterium's cytosol--the fluid that fills the cell.

"We found that the lightest of the lanthanides--lanthanum through neodymium on the periodic table--get into the cytosol, but the heavier ones don't," said Cotruvo. "We're still trying to understand exactly how and why that is, but this tells us that there are proteins in the cytosol that handle lanthanides, which we didn't know before. Understanding what is behind this high uptake selectivity could also be useful in developing new methods to separate one lanthanide from another, which is currently a very difficult problem."

The team also determined that the bacteria takes in lanthanides much like many bacteria take in iron; they secrete small molecules that tightly bind to the metal, and the entire complex is taken into the cell. This reveals that there are small molecules that likely bind to lanthanides even more tightly than the highly selective sensor.

"We hope to further study these small molecules and any proteins in the cytosol, which could end up being better at binding to lanthanides than the protein we used in the sensor," said Cotruvo. "Investigating how each of these bind and interact with lanthanides may give us inspiration for how to replicate these processes when collecting lanthanides for use in current technologies."
-end-
In addition to Cotruvo, the research team includes Joseph Mattocks and Jackson Ho at Penn State. This work is funded by the Penn State Eberly College of Science Department of Chemistry and the Penn State Huck Institutes of the Life Sciences.

Penn State

Related Bacteria Articles:

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.