Quality of laser beam shaping can be enhanced at no extra cost

April 23, 2019

Researchers from Osaka University developed a technique for improving accuracy of laser beam shaping and wavefront obtained by conventional methods with no additional cost by optimizing virtual phase grating. The results of their research were published in Scientific Reports.

A high quality square flattop beam is in demand for various fields, such as uniform laser processing, medicine, as well as ultrahigh intensity laser applications for accelerators and nuclear fusion. Beam shape is key to realizing the laser's potential abilities and effects. However, since beam shape and wavefront vary by laser, beam shaping is essential for producing the desired shapes to respond to various needs.

Static and adaptive beam shaping methods have been developed for various applications. With Diffractive Optical Element (DOE) as a static method, edge steepness and flatness are low and wavefront becomes deformed after shaping. (Figure 1 (a)) In addition, computer-generated hologram (CGH) as a typical adaptive method has the same difficulties.

Meanwhile, an adaptive beam shaping technique that uses phase grating encoded on a spatial light modulator (SLM) with spatial-frequency filtering in the Fourier plane in a 4f system was developed. (Figure 2 (a)) This conventional method generates a square flattop beam by spatially controlling diffraction efficiency without deforming the wavefront. However, because the extracted and residual components overlap in the Fourier plane, it was necessary to cut the high spatial-frequency (HSF) component from the extracted component, limiting the flatness and the edge steepness of the resultant beam shape. (Figure 1 (b))

In this study, the group developed a universal beam shaping technique at high accuracy, which can be used for various lasers from ultraviolet to near-infrared domain.

This method spatially separates the residual and extracted components in the Fourier plane by using a virtual diagonal phase grating (Figure 2(b)) and clears overlap by making the grating vector kg non-parallel to the normal vectors kx or ky of the desired beam profile, which are parallel to each other in the conventional scheme.

By efficiently using only extracted components containing HSF components, beam shaping at high resolution was achieved. This allowed for a highly uniform flattop beam of any cornered shape without ripples, suppressing the edge of the shaped beam to a height of 20 μm, which is less than 20% of that obtained with conventional vertical phase grating.

Corresponding author Yoshiki Nakata says, "Our method, which allows for optimization of beam shaping by improving resolution and accuracy, will contribute to a wide field, including basic research, manufacturing and medical engineering. In conventional beam shaping systems, beam shaping accuracy can be significantly enhanced at no extra cost simply by changing the spatial frequency filter and phase grating encoded on an SLM."
-end-
The Article, "Utilization of the high spatial-frequency component in adaptive beam shaping by using a virtual diagonal phase grating" was published in Scientific Reports at DOI: https://doi.org/10.1038/s41598-019-40829-7.

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: https://resou.osaka-u.ac.jp/en/top

Osaka University

Related Laser Articles from Brightsurf:

Laser technology: New trick for infrared laser pulses
For a long time, scientists have been looking for simple methods to produce infrared laser pulses.

Sensors get a laser shape up
Laser writing breathes life into high-performance sensing platforms.

Laser-powered nanomotors chart their own course
The University of Tokyo introduced a system of gold nanorods that acts like a tiny light-driven motor, with its direction of motion is determined by the orientation of the motors.

What laser color do you like?
Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have developed a microchip technology that can convert invisible near-infrared laser light into any one of a panoply of visible laser colors, including red, orange, yellow and green.

Laser technology: The Turbulence and the Comb
While the light of an ordinary laser only has one single, well-defined wavelength, a so-called ''frequency comb'' consists of different light frequencies, which are precisely arranged at regular distances, much like the teeth of a comb.

A laser for penetrating waves
The 'Landau-level laser' is an exciting concept for an unusual radiation source.

Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.

The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.

The random anti-laser
Scientists at TU Wien have found a way to build the 'opposite' of a laser -- a device that absorbs a specific light wave perfectly.

Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.

Read More: Laser News and Laser Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.