Nav: Home

Dramatic decrease in cold-water plankton during industrial era

April 23, 2020

There has been a dramatic decrease in cold-water plankton during the 20th century, in contrast to thousands of years of stability, according to a new UCL-led study.

The research, published in Geophysical Research Letters, analysed the fossilised remains of plankton, sampled from the Northeast Atlantic Ocean, south of Iceland. The scientists uncovered a striking change in the types of species that inhabit these waters.

Lead author of the study, Dr Peter Spooner (UCL Geography), said: "The Northeast Atlantic is of crucial importance for the global climate system and marine ecosystems. In this study, we provide the first evidence that Northeast Atlantic circulation in the 20th century was unusual compared to the last 10,000 years.

"This change in Northeast Atlantic circulation caused a replacement of cool, subpolar waters with warmer subtropical waters near Iceland, and has impacted the distribution of marine organisms, particularly plankton. The most striking aspect of our work is the exceptional nature of the shift in the 20th century, in contrast to thousands of years of relative stability, with implications for understanding future change."

The research builds on earlier work which examined how the North Atlantic conveyor circulation has been changing over the industrial era, and was a collaboration with Woods Hole Oceanographic Institution (USA), the Scottish Association of Marine Science, and the University of Edinburgh. The scientists analysed around 150,000 specimens of planktonic foraminifera, tiny single-celled creatures that float in ocean waters.

They compared how different species of plankton fared over a 10,000 year period, using sediment from the bottom of the ocean to reconstruct how the Northeast Atlantic has changed.

They found that between around 6000 BC and 1750 AD, the region was dominated by Turborotalita quinqueloba, a species of plankton that prefer cooler waters (representing around 40% of all species of floating foraminifera).

However, during the 20th century the relative abundance of the species declined dramatically and was replaced by a transitional (warmer water) type of plankton, such as N. incompta and G. glutinata.

Co-lead author Dr David Thornalley (UCL Geography) said, "We are too used to thinking of the North Atlantic as being dominated by natural cycles that last decades. But this is only because direct observations do not go back far enough. These new records allow us to put our observations into a much longer-term context, and reveal the exceptional nature of what has happened in the 20th century."

As well as the change from cold to warmer species, the team found indicators of changing nutrient and food availability, all suggesting that waters from the subtropics were making their way to Iceland.

The findings correlate with other records from across the North Atlantic, which suggest that ocean warming and nutrient changes, driven by increased freshwater into the North Atlantic Circulation Belt, are likely to be the main culprit. The authors argue the evidence all points to changing ocean circulation.

Dr Spooner added: "The end of the Little Ice Age may have triggered a freshwater input early in the industrial era. And with climate change today, we are seeing more freshwater entering the Atlantic, through melting ice, increasing rainfall and pulses of freshwater from the Arctic Ocean."

The habitats of marine species, from plankton and fish to whales, are governed by ocean circulation, temperature and food. The research highlights that not only plankton has been affected.

Dr Spooner said: "Fisheries data only goes back so far, and it is difficult to separate the effects of overfishing from those of climate change, but for some species such as mackerel, which is now being regularly fished around Iceland, it seems clear that the changes we have seen are having a profound impact on where it can be found.

Professor Murray Roberts (University of Edinburgh), ATLAS project coordinator, concluded: "We know that ocean circulation in the area can affect the whole ecosystem, all the way up to top predators such as pilot whales. If the ocean has changed this much in the last hundred years - which we usually think of as being quite a stable period - it is absolutely essential we understand the implications before new human activities like deep-sea mining are allowed to begin."
The research was funded by a National Science Foundation grant, the Leverhulme Trust and the European Union's Horizon 2020 Research and Innovation Framework Programme.

The study forms part of a large European Union funded project, ATLAS, which has been investigating how changes in the ocean may affect deep-sea ecosystems, such as cold-water corals that provide important fish habitats and help recycle ocean nutrients. The ATLAS work is continuing in the new project iAtlantic, which will aim to understand those areas of the ocean under the most rapid change.

University College London

Related Climate Change Articles:

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.
Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.