A new therapeutic target turns the immune system against lymphoma

April 23, 2020

Non-Hodgkin lymphoma (NHL) is a group of cancers that originate in the lymph nodes and affect white blood cells of the immune system called B cells. In NHL, B cells grow out of control and create tumors in the lymph nodes, spleen, or other tissues. According to the American Cancer Society, about 80,000 people will be diagnosed with NHL in 2020, and 20,000 will die of it.

Today, immunotherapy is one of the most promising treatment for cancer patients. Unlike radio- or chemo- therapies, immunotherapy aims to "switch on" the patient's own immune system to attack and eliminate the tumor. However, tumors, including NHL, often mutate to make themselves invisible to the immune system or even exploit interactions with immune cells to grow.

A team of researchers led by Elisa Oricchio at EPFL have now identified one of the mechanisms used by NHL to hijack the immune system. The scientists found that certain patients with NHL have a mutated and over-activated form of a protein called cathepsin S. This protein is responsible for cutting other proteins into small fragments that are then exposed on the surface of tumor cells. These fragments mediate communications between cancer and immune cells.

"When cathepsin S is active, cancer cells interact with immune cells called CD4+ T-cells, which help the tumor to grow, while they maintain social distance with CD8+ T-cells, which would attack and kill the tumor," explains Elie Dheilly, one of the lead authors of the study.

The identification of this duplicitous relationship between cancer cells and T-cells prompted the researchers to genetically eliminate cathepsin S to understand how tumor growth would be affected.

Inhibiting cathepsin S reduced tumor growth by inverting the communication with T-cells: CD8+ T-cells were now attacking the tumor, while CD4+ T-cells were kept at bay. This happens by inducing something called "antigen diversification", which generates a different population of fragments helping T-cells to identify and kill tumor cells.

"We think that cathepsin S could represent an important therapeutic target," says Elisa Oricchio. "Inducing antigen diversification is an attractive therapeutic strategy to increase tumor immunogenicity and enhance response to immunotherapies in lymphoma but possibly also in other tumor types."

During the study, Elena Battistello, co-lead author, developed a new imaging technique to specifically measure the activity of cathepsin S. Using this technique, Oricchio and her team have identified and further developed new inhibitors (patent application filed) that could be used to improve the treatment of patients diagnosed with NHL.
-end-
Professor Oricchio's lab is part of the Swiss Institute for Experimental Cancer Research (ISREC) within the School of Life Sciences at EPFL. ISREC@EPFL is part of the Swiss Cancer Center Léman (SCCL), a multidisciplinary alliance pursuing fundamental, translational, and clinical cancer research. The SCCL founding members are the Lausanne University Hospital (CHUV), the Geneva University Hospitals (HUG), the universities of Lausanne (UNIL) and Geneva (UNIGE), and EPFL.

Other contributors

Swiss Cancer Center Leman
University of Lausanne
Swiss Institute of Bioinformatics
Ludwig Institute for Cancer Research
University Hospital of Lausanne
Centre for Lymphoid Cancer, BC Cancer Agency
EPFL Institute of Bioengineering EPFL
Histology Core Facility
Ulm University and Ulm University Medical Center
Princess Margaret Cancer Center

Reference

Elie Dheilly, Elena Battistello, Natalya Katanayeva, Stephanie Sungalee, Justine Michaux, Gerben Duns, Sarah Wehrle, Jessica Sordet-Dessimoz, Marco Mina, Julien Racle, Pedro Farinha, George Coukos, David Gfeller, Anja Mottok, Robert Kridel, Bruno E. Correia, Christian Steidl, Michal Bassani-Sternberg, Giovanni Ciriello, Vincent Zoete, Elisa Oricchio. Cathepsin S regulates antigen processing and T cell activity in Non-Hodgkin Lymphoma. Cancer Cell 23 April 2020. DOI: https://doi.org/10.1016/j.ccell.2020.03.016

Ecole Polytechnique Fédérale de Lausanne

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.