Nav: Home

How birds evolved big brains

April 23, 2020

An international team of evolutionary biologists and paleontologists have reconstructed the evolution of the avian brain using a massive dataset of brain volumes from dinosaurs, extinct birds like Archaeopteryx and the Great Auk, and modern birds.

The study, published online today in the journal Current Biology, reveals that prior to the mass extinction at the end of the Cretaceous Period, birds and non-avian dinosaurs had similar relative brain sizes. After the extinction, the brain-body scaling relationship shifted dramatically as some types of birds underwent an explosive radiation to re-occupy ecological space vacated by extinct groups.

"One of the big surprises was that selection for small body size turns out to be a major factor in the evolution of large-brained birds," says Dr. Daniel Ksepka, Curator of Science at the Bruce Museum and lead author of the study. "Many successful bird families evolved proportionally large brains by shrinking down to smaller body sizes while their brain sizes stayed close to those of their larger-bodied ancestors."

In order to understand how bird brains changed, a team of 37 scientists used CT scan data to create endocasts (models of the brain based on the shape of the skull cavity) of hundreds of birds and dinosaurs, which they combined with a large existing database of brain measurements from modern birds. They then analyzed brain-body allometry: the way brain size scales with body size.

"There is no clear line between the brains of advanced dinosaurs and primitive birds," notes co-author Dr. Amy Balanoff of Johns Hopkins University. "Birds like emus and pigeons have the same brains sizes you would expect for a theropod dinosaur of the same body size, and in fact some species like moa have smaller-than-expected brains."

The two groups of birds with truly exceptional brain sizes evolved relatively recently: parrots and corvids (crows, ravens, and kin). These birds show tremendous cognitive capacity, including the ability to use tools and language, and to remember human faces. The new study finds that parrots and crows exhibited very high rates of brain evolution that may have helped them achieve such high proportional brain sizes.

"Several groups of birds show above average rates of brain and body size evolution," remarks co-author Dr. N. Adam Smith of the Campbell Geology Museum at Clemson University. "But crows are really off the charts - they outpaced all other birds. Our results suggest that calling someone 'bird-brained' is actually quite a compliment!"

"Crows are the hominins of the bird kingdom," says co-author Dr. Jeroen Smaers of Stony Brook University. "Like our own ancestors, they evolved proportionally massive brains by increasing both their body size and brain size at the same time, with the brain size increase happening even more rapidly."
-end-
Reference: Ksepka, et al. 2020. Tempo and Pattern of Avian Brain Size Evolution. Current Biology. https://doi.org/10.1016/j.cub.2020.03.060

About the Bruce Museum

A community based, world-class institution highlighting art, science and natural history in more than a dozen changing exhibitions annually, the Bruce Museum is located at 1 Museum Drive in Greenwich, Connecticut. The science collection focuses on natural history and includes minerals and fossils, bird and mammal mounts, butterflies and other invertebrates, reptiles, fish, and skeletons. The specimens represent worldwide localities and the collection grows through field collecting, donations, bequests, exchanges, and purchases. For additional information, call the Bruce Museum at 203-869-0376 or visit brucemuseum.org.

Media Contact: Dr. Daniel Ksepka, Curator, Bruce Museum; 973-907-0047 or Ksepka@gmail.com

Bruce Museum

Related Evolution Articles:

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.
Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.
How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.
Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.