Discovered the physiological mechanisms underlying the most common pediatric Leukemia

April 23, 2020

B-cell acute lymphoblastic leukemia (B-ALL) is characterized by the accumulation of abnormal immature B-cell precursors (BCP) in the bone marrow (BM) and is the most common pediatric cancer. Among the different subtypes known in B-ALL, the most common one is characterized by the presence of a higher number of chromosomes than in healthy cells and is called High hyperdiploid B-ALL (HyperD-ALL). This genetic abnormality is an initiating oncogenic event affiliated to childhood B-ALL, and it remains poorly characterized.

HyperD-ALL comprises 30% of pediatric B-ALL and usually has a favorable clinical outcome, with 90% of survival in patients with this hematologic cancer. Despite this, until date, there was very little knowledge on how hyperdiploidy occurs in HyperD-ALL, as an initiating oncogenic event in B-ALL and which secondary alterations are necessary for leukemic B-ALL cells accumulation in the bone marrow, impeding the growth of healthy cells and leading to the clinical leukemia complications.

A precise knowledge of the physiopathogenic mechanisms underlying HyperD- ALL was necessary because the morbidity/mortality associated with HyperD-ALL still represents a clinical challenge due to the high number of patients suffering from this type of B-ALL. For this reason, Oscar Molina, researcher of the Group of Stem Cells, Developmental Biology, and Immunotherapy of the Josep Carreras Leukaemia Research Institute, has led research on the mechanisms underlying HyperD-ALL, unveiling how and why it happens, published in Blood Journal this April 2020.

Molina and the co-authors of the study hypothesized that the origin of the pathogenic mechanisms associated with hyperdiploidy in B-ALL could be in the moment of the cell's division, known as mitosis, which is a highly orchestrated cellular process that controls the equal distribution of the genetic material, already duplicated and compacted in chromosomes, in two "newborn" cells.

"We knew already that HyperD-ALL arises in a BCP in utero. However, the causal molecular mechanisms of hyperdiploidy in BCPs remained elusive. As faithful chromosome segregation is essential for maintaining the genomic integrity of cells, and deficient chromosome segregation leads to aneuploidy and cancer, we wanted to observe and deepen on what is happening in chromosomes' segregation in HyperD-ALL, because we suspected that by studying cell division in these cells we would find an explanation to this oncogenic process."

Molina was right. Researchers used a large cohort of primary pediatric B-ALL samples, 54. What Molina and his colleagues discovered was that three key processes and actors for correct mitosis or cell division and chromosome segregation were misfunctioning in hyperdiploid cells; that artificial disruption of these processes in blood cells with normal chromosome numbers generated hyperdiploid cells resembling those in B-ALL samples. Therefore, shedding light on the cellular and molecular mechanisms involved in HyperD-ALL origin and progression.

The main proteins and processes leading to fatal error were a malfunctioning of the Condensin complex, a multiprotein complex responsible for helping condense the genetic material correctly into chromosomes; the protein Aurora B kinase, that is responsible for a correct chromosome attachment to the spindle poles, thus ensuring proper chromosome segregation; and the mitotic checkpoint, or Spindle Assembly Checkpoint (SAC), the cell machinery involved in controlling that chromosomes are correctly separated to each pole of the cell that is dividing.

With these findings, Molina et al. have unveiled the molecular mechanisms that are altered in this frequent type of pediatric blood cancer.

"Next steps would be to study whether other subtypes of B-ALL with abnormal chromosome numbers, such as hypodiploid B-ALL, a very aggressive subtype of pediatric blood cancer characterized by lower numbers of chromosomes, share a common molecular mechanism. These studies will allow generating the first in vivo models of leukemias with abnormal chromosome numbers in mice that will be crucial to understand its origin and development, thus facilitating the development of more targeted and less toxic therapies for these pediatric blood cancers" stated Oscar Molina.

Josep Carreras Leukaemia Research Institute

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to