Mathematical curves predict evolution in COVID-19 spread

April 23, 2020

Efforts to contain the spread of the Covid-19 pandemic are now the top priority of governments across the globe. As they make these life-saving decisions, it is particularly crucial for policymakers to accurately predict how the spread of the virus will change over time. Through research published in EPJ Plus, Ignazio Ciufolini at the University of Salento, and Antonio Paolozzi at Sapienza University of Rome, identify a clear mathematical trend in the evolution of daily new cases and death numbers in China, and use the same curve to predict how a similar slowdown will unfold in Italy.

By aligning their strategies with predictions made by the curve, policymakers could be better equipped to draw out scientifically robust plans and timescales for their containment measures. Ciufolini and Paolozzi based their approach around a function commonly used in statistics to track changes in the total values of specific quantities over time. After fine-tuning the parameters defining the shape of their curve, they found that it closely approximated the evolution of daily new cases and deaths in official data from China, where Covid-19 has now been largely contained.

The researchers then used the same approach to predict the evolution of the two values in Italy, by fitting the initial part of their curve to the official data available as of March 29th. This allowed them to make informed predictions of when numbers of daily new cases and deaths will peak, and then begin to fall significantly. Furthermore, the duo strengthened the reliability of these predictions by incorporating their mathematics into Monte Carlo computer simulations, which they ran 150 times.

Ciufolini and Paolozzi acknowledge that their approach cannot account for real-world factors like numbers of daily nasopharyngeal swabs, social distancing, or the fact that real case numbers are likely far higher than those reported. They are now improving their algorithm's predictions by considering how the number of individuals tested by swabs is now far higher in Italy than at the beginning of the infection. If the necessary precautions are taken by governments, and curve parameters tailored to specific nations, they hope that it could become an important part of monumental global efforts to reduce the human cost of the global pandemic.

I. Ciufolini, A. Paolozzi (2020), Prediction of the time evolution of the Covid-19 Pandemic in Italy by a Gauss Error Function and Monte Carlo simulations, Eur. Phys. J. Plus 134:355, DOI 10.1140/epjp/s13360-020-00383-y


Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to