Explorers in nanospace

April 24, 2002

While astrophysicists are figuring out the challenges of travel through outer space, CSIRO materials researchers are tackling a problem at the opposite end of the size scale - moving molecules through nanospace.

A team of Australian and US scientists today announced a world advance in the use of membrane technology to filter and separate various gases and vapours.

The breakthrough has implications for many activities, ranging from water purification and environmental cleanup, to better fuels and petrochemicals, purer medicines and desalination of seawater for drinking.

A team from CSIRO, University of Texas at Austin, North Carolina State University and MTR, Menlo Park California, reports in the latest issue of Science (April 19) the discovery of a new type of nanoparticle-enhanced filter for separating compounds at the molecular level.

"Just as astrophysicists are exploring 'wormholes' in space-time through which people might one day be able to pass, we're looking at ways to create wormholes at the tiniest level, just millionths of a millimeter in size, in a filter medium so that we can control precisely what passes through and what doesn't," explains CSIRO's Dr Anita Hill.

The new filtration media are created by combining organic polymers normally used to make membrane filters with inorganic substances - in this case a mist of silica nanoparticles.

The team discovered that this combination gives the membrane a quite extraordinary ability to separate large organic molecules from the gases in which they might be floating.

This new class of organic/inorganic materials, known as nanocomposites, have already been shown to be remarkable for enhanced conductivity, being extremely tough, having valuable optical properties and acting as catalysts.

The US-Australian team has now demonstrated a new and potentially even more useful trait - the ability to filter gases and organic vapours at the molecular level.

"This is a diverse field affecting processes such as biomolecule purification, environmental remediation, seawater desalination and petroleum chemicals and fuel production," Dr Hill says.

"Traditionally, this sort of filtering has mostly been done by distillation, which is often very costly in terms of equipment and energy use.

"Membranes are attractive as filters because they are a low-cost, energy-efficient, green technology - but their uses for separating gases have so far been limited by the lack of the right sort of membranes to yield pure products, with high speed and low operating cost while remaining stable."

As a rule, the more selective a polymer is at extracting a pure gas, the less permeable it tends to be - and the more expensive it is to use.

The new nanoparticle-enhanced polymers promise to deliver both high filtering efficiency and high throughput, making them much more cost-efficient, she says.

While the work has so far only been demonstrated in laboratory and pilot-scale trials, further down the track she is confident it offers the prospects of greater efficiency to industries such as Australia's $2.6 billion natural gas export sector - or in the production of hydrogen, now seen by leading CSIRO scientists as Australia's primary energy source of the future.
-end-


CSIRO Australia

Related Desalination Articles from Brightsurf:

A biomimetic membrane for desalinating seawater on an industrial scale
Reverse osmosis is one of the most widely used techniques for the desalination of water.

The Marangoni Effect can be used to obtain freshwater from the sea
A study conducted at the Politecnico di Torino, in collaboration with the Massachusetts Institute of Technology (MIT), and published in the journal Energy and Environmental Science, presents a solar desalination device capable of spontaneously removing the accumulated salt.

Breakthrough technology purifies water using the power of sunlight
A research team, led by Australia's Monash University, has been able to transform brackish water and seawater into safe, clean drinking water in less than 30 minutes using metal-organic frameworks (MOFs) and sunlight.

How clean water technologies could get a boost from X-ray synchrotrons
In a new perspective, SLAC and University of Paderborn scientists argue that research at synchrotrons could help improve water-purifying materials in ways that might not otherwise be possible.

Solar-driven membrane distillation technology that can double drinking water production
A joint research team from the Korea Institute of Science and Technology (KIST), led by Dr.

Chemists advance solar energy storage aimed at global challenges
Multi-university effort develops solar energy storage to enable decentralized electrification systems in remote areas.

Unorthodox desalination method could transform global water management
Over the past year, Columbia Engineering researchers have been refining their unconventional desalination approach for hypersaline brines -- temperature swing solvent extraction (TSSE) -- that shows great promise for widespread use.

Multifunctional porous carbon fibers show significant promise in capacitive desalination
Researchers have developed a material that is up to 40 times faster in desalinating small batches of water than other materials available today.

KIST ensures stability of desalination process with magnesium
A Korean research team found a method to inhibit the fouling of membranes, which are used in the desalination process that removes salt and dissolved substances from seawater to obtain drinking, domestic, and industrial water.

Harnessing the sun to bring fresh water to remote or disaster-struck communities
Researchers at the University of Bath have developed a revolutionary desalination process that has the potential to be operated in mobile, solar-powered units.

Read More: Desalination News and Desalination Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.