Coding for arthropods - what's so special about insects and spiders?

April 24, 2006

The central dogma of molecular biology is that DNA makes RNA makes protein. This relies on a specific underlying code which relates given triplets of RNA nucleotides into specific amino acids. Each of the 20 amino acids is represented by one or more RNA triplets, or codons: UAC is decoded as tyrosine, for example, and UGC as cysteine. (U is the RNA nucleotide containing uracil, A is adenine, C is cytosine, and G is guanine.) For some time the code had been thought to be the same in all organisms. But exceptions have been seen before, particularly in mitochondria.

In a new study published online this week in the open-access journal PLoS Biology, Federico Abascal, Rafael Zardoya, and colleagues show that in the mitochondria of arthropod there are two nonstandard codes, and suggest that genetic code changes within a lineage may be more frequent than was earlier believed.

The authors aligned the mitochondrial coding sequence from >600 animal species looking for conserved codons and identifying which amino acid (AA) it specified in the corresponding protein. The most frequent AA was taken to be the canonical translation of that codon. What they found was that although most codons adhered to the common genetic code in all species, there was nonetheless a surprising trend in the arthropods, the largest of all animal phyla. Typically, AGG translates as the amino acid serine. However, among the arthropod mitochondrial genomes, AGG coded for serine in some species and lysine in others. The authors' analysis of the patterns of change also suggests that the original arthropod mitochondrion used AGG for lysine, not serine.

The observed variety suggests the code has changed multiple times between the two genetic codes. It might be that pairing of AGG and lysine is disadvantageous for the organism employing it, so that loss or reversion over time would be favored. This might also suggest the existence of multiple other nonstandard codes within other lineages. Who knows what other alternatives might be decoded with this method in the future.
-end-
Citation: Abascal F, Posada D, Knight RD, Zardoya R (2006) Parallel evolution of the genetic code in arthropod mitochondrial genomes. PLoS Biol 4(5): e127.

CONTACT:
Federico Abascal
Museo Nacional de Ciencias Naturales
Madrid, 28006
Spain
+34- 91-411-1328
+34- 91-564-5078 (fax)
fabascal@mncn.csic.es

PLEASE MENTION THE OPEN-ACCESS JOURNAL PLoS BIOLOGY (www.plosbiology.org) AS THE SOURCE FOR THESE ARTICLES AND PROVIDE A LINK TO THE FREELY-AVAILABLE TEXT. THANK YOU.

All works published in PLoS Biology are open access. Everything is immediately available--to read, download, redistribute, include in databases, and otherwise use--without cost to anyone, anywhere, subject only to the condition that the original authorship and source are properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.

PLOS

Related Amino Acids Articles from Brightsurf:

Igniting the synthetic transport of amino acids in living cells
Researchers from ICIQ's Ballester group and IRBBarcelona's Palacín group have published a paper in Chem showing how a synthetic carrier calix[4]pyrrole cavitand can transport amino acids across liposome and cell membranes bringing future therapies a step closer.

Microwaves are useful to combine amino acids with hetero-steroids
Aza-steroids are important class of compounds because of their numerous biological activities.

New study finds two amino acids are the Marie Kondo of molecular liquid phase separation
a team of biologists at the Advanced Science Research Center at The Graduate Center, CUNY (CUNY ASRC) have identified unique roles for the amino acids arginine and lysine in contributing to molecule liquid phase properties and their regulation.

Prediction of protein disorder from amino acid sequence
Structural disorder is vital for proteins' function in diverse biological processes.

A natural amino acid could be a novel treatment for polyglutamine diseases
Researchers from Osaka University, National Center of Neurology and Psychiatry, and Niigata University identified the amino acid arginine as a potential disease-modifying drug for polyglutamine diseases, including familial spinocerebellar ataxia and Huntington disease.

Alzheimer's: Can an amino acid help to restore memories?
Scientists at the Laboratoire des Maladies Neurodégénératives (CNRS/CEA/Université Paris-Saclay) and the Neurocentre Magendie (INSERM/Université de Bordeaux) have just shown that a metabolic pathway plays a determining role in Alzheimer's disease's memory problems.

New study indicates amino acid may be useful in treating ALS
A naturally occurring amino acid is gaining attention as a possible treatment for ALS following a new study published in the Journal of Neuropathology & Experimental Neurology.

Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.

To make amino acids, just add electricity
By finding the right combination of abundantly available starting materials and catalyst, Kyushu University researchers were able to synthesize amino acids with high efficiency through a reaction driven by electricity.

Nanopores can identify the amino acids in proteins, the first step to sequencing
While DNA sequencing is a useful tool for determining what's going on in a cell or a person's body, it only tells part of the story.

Read More: Amino Acids News and Amino Acids Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.