Nav: Home

Ames Laboratory scientists create cheaper magnetic material for cars, wind turbines

April 24, 2015

Karl A. Gschneidner and fellow scientists at the U.S. Department of Energy's Ames Laboratory have created a new magnetic alloy that is an alternative to traditional rare-earth permanent magnets.

The new alloy--a potential replacement for high-performance permanent magnets found in automobile engines and wind turbines--eliminates the use of one of the scarcest and costliest rare earth elements, dysprosium, and instead uses cerium, the most abundant rare earth.

The result, an alloy of neodymium, iron and boron co-doped with cerium and cobalt, is a less expensive material with properties that are competitive with traditional sintered magnets containing dysprosium.

Experiments performed at Ames Laboratory by post-doctoral researcher Arjun Pathak, and Mahmud Khan (now at Miami University) demonstrated that the cerium-containing alloy's intrinsic coercivity--the ability of a magnetic material to resist demagnetization--far exceeds that of dysprosium-containing magnets at high temperatures. The materials are at least 20 to 40 percent cheaper than the dysprosium-containing magnets.

"This is quite exciting result; we found that this material works better than anything out there at temperatures above 150° C," said Gschneidner. "It's an important consideration for high-temperature applications."

Previous attempts to use cerium in rare-earth magnets failed because it reduces the Curie temperature--the temperature above which an alloy loses its permanent magnet properties. But the research team discovered that co-doping with cobalt allowed them to substitute cerium for dysprosium without losing desired magnetic properties.

Finding a comparable substitute material is key to reducing manufacturing reliance on dysprosium; the current demand for it far outpaces mining and recycling sources for it.
-end-
The paper, "Cerium: An Unlikely Replacement of Dysprosium in High Performance Nd-Fe-B Permanent Magnets" was published in Advanced Materials, and co-authored by Arjun K. Pathak, Mahmud Khan, Karl. A. Gschneidner, Ralph W. McCallum, Lin Zhou, Kewei Sun, Kevin W. Dennis, Matthew J. Kramer and Vitalij Pecharsky of the Ames Laboratory; Chen Zhou of MEDA Engineering and Technical Services LLC; and Frederik E. Pinkerton of General Motors R&D Center.

The research was supported by the U.S. Department of Energy's ARPA-E REACT program (Advanced Research Projects Agency-Energy-Rare Earth Alternatives in Critical Technologies) which develops cost-effective alternatives to rare earths, the naturally occurring minerals with unique magnetic properties that are used in electric vehicle (EV) motors, and wind generators. The REACT projects identify low-cost and abundant replacement materials for rare earths while encouraging existing technologies to use them more efficiently.

Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

DOE/Ames Laboratory

Related Wind Turbines Articles:

Designing lightweight glass for efficient cars, wind turbines
A new machine-learning algorithm for exploring lightweight, very stiff glass compositions can help design next-gen materials for more efficient vehicles and wind turbines.
Quadrupling turbines, US can meet 2030 wind-energy goals
The United States could generate 20% of its electricity from wind within 10 years, without requiring any additional land, according to Cornell University research published in Nature Scientific Reports.
Supporting structures of wind turbines contribute to wind farm blockage effect
Much about the aerodynamic effects of larger wind farms remains poorly understood.
Wind and water
Damaging rains from hurricanes can be more intense after winds begin to subside, say UC Santa Barbara scientists.
Silverswords may be gone with the wind
In a new study in the Ecological Society of America's journal Ecological Monographs, researchers seek to understand recent population declines of Haleakalā silverswords and identify conservation strategies for the future.
Biodiversity and wind energy
The location and operation of wind energy plants are often in direct conflict with the legal protection of endangered species.
Computer models show clear advantages in new types of wind turbines
Researchers from Aarhus University and Durham University have modelled the fluid dynamics of multi-rotor wind turbines via high-resolution numerical simulations.
(Not only) the wind shows the way
When the South African dung beetle rolls its dung ball through the savannah, it must know the way as precisely as possible.
New whistle alerts bats to steer clear of wind turbines
Wind turbines are a critical component in the strategy for energy independence, but these massive structures are also killing bats.
Windier wind farms
You've probably seen them, perhaps on long roadtrips: wind turbines with enormous, hypnotic rolling blades, harnessing the clean power of wind for conversion into electric energy.
More Wind Turbines News and Wind Turbines Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.