Nav: Home

Climate change clues revealed by ice sheet collapse

April 24, 2017

The rapid decline of ancient ice sheets could help scientists predict the impact of modern-day climate and sea-level change, according to research by the universities of Stirling in Scotland and Tromsø in Norway.

Ice sheets are massive land-based reservoirs of frozen water. For the first time, scientists have reconstructed in detail the evolution of the last ice sheet that covered Iceland around 20,000 years ago.

The recently published study shows the greatest changes took place at a time when temperatures in the Northern Hemisphere rose by around 3°C in just 500 years.

The maximum rate of ice loss in Iceland then was on the same scale seen in West Antarctica and Greenland today, providing worrying evidence of how climate change can dramatically alter the world's ice sheets, leading to rapid sea level rise.

Dr Tom Bradwell, from Stirling's Faculty of Natural Sciences, said: "About 22,000 years ago, the climate awoke from the last Ice Age, and entered a prolonged but gradual period of warming. This triggered the melting of the huge ice sheets that once covered North America and Eurasia.

"We used seafloor data to map the full extent of the last Icelandic ice sheet and fed this geological information into our ice sheet model. The new modelling experiments, driven by climate data from Greenland ice cores, replicate ice sheet behaviour over the last 35,000 years, showing when it melted the fastest and how it behaved.

"We found that, at certain times, the Icelandic ice sheet retreated at an exceptionally fast rate - more than double the present-day rate of ice loss from the much larger West Antarctic ice sheet - causing global sea level to rise significantly."

These high-resolution model experiments, published in Earth-Science Reviews, provide an unprecedented view of how the Icelandic ice sheet rapidly reduced in size and volume between 21,000 and 18,000 years ago, mainly through icebergs breaking away from its marine margins. It then collapsed 14,000 years ago, this time abruptly in response to rapid climate warming.

The Icelandic ice sheet reached a maximum size of 562,000 sq. km - an area about the size of France. During its dramatic collapse the ice sheet melted rapidly over much of its surface area, decreasing in size by almost two-thirds, in only 750 years. This large volume of ice melting caused a 46 cm-rise in global sea levels -- or more than 1mm rise every two years for over seven centuries -- and is equivalent to the ice losses currently being experienced in Greenland.

When compared to the length of time it took the Icelandic ice sheet to grow to its full size -- approximately 10,000 years -- this rate of change is all the more remarkable.

These abrupt events, seen in former ice sheets and mirrored today, put present-day rates of ice sheet change in a new perspective. However, until recently, much of the data needed to reconstruct and model their shape, size and flow existed unseen below sea level.

Dr Henry Patton, from UiT The Arctic University of Norway, said: "Satellite data show that the present polar ice sheets can respond on alarmingly short timescales to climate and ocean changes. By using data from the geological record to constrain model reconstructions of rapid ice sheet change thousands of years ago, we can better predict how contemporary ice sheets will probably react in the future and the serious impact they have on sea level rise."

Prof Alun Hubbard, who works at UiT Norway and Aberystwyth University, said: "Just like the Icelandic ice sheet, some 20,000 year ago, the retreat of the Greenland ice sheet is now contributing up to approximately 1.2 mm per year to global sea-level rise. That doesn't sound much but given the time-scales involved, and that Greenland's ice loss has increased from nothing 20 years ago to over roughly 350 cubic per year now, makes it a significant cause for concern -- particularly for those low lying, coastal regions where much of the planet's population lives."

The research, supported by the Research Council of Norway, is part of an ongoing collaboration between the scientists in the Universities of Tromsø, Aberystwyth and Stirling to understand ice sheet evolution, past and present.
-end-


University of Stirling

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.