Nav: Home

From abundant hydrocarbons to rare spin liquids

April 24, 2017

Fuel such as petrol is made up of hydrocarbons -- a family of molecules consisting entirely of carbon and hydrogen. Pigment and dye, coal and tar are made up of hydrocarbons too.

These common, abundant materials, sometimes even associated with waste, are not often thought of as being electronically or magnetically interesting. But an international research team, led by Professor Kosmas Prassides of Tohoku University in Japan and Professor Matthew J. Rosseinsky of the University of Liverpool in the U.K., has made a significant find.

The team recently discovered how to take such hydrocarbon molecular components, dress them with electrons, each of which carries a small compass -- an unpaired spin -- and pack them together like cookies in a box to create a quantum spin liquid -- a long-sought hypothetical state of matter.

It was in 1973 that the existence of quantum spin liquids was first theoretically proposed. In conventional magnets, the motion of the electron spins - the tiny magnets -- freezes on cooling as they align parallel or antiparallel to each other (Fig. 1 left). In contrast, the spins in a quantum spin liquid never stop fluctuating, randomly and strongly, even at the lowest temperature of absolute zero. Each individual spin points simultaneously along an infinite number of directions and is highly entangled with other spins, even those far away (Fig. 1 right). As such, this sea of electron spins is predicted to be host to many exotic phenomena of both fundamental and technological interest.

However, experimental realization of this unique fully-entangled state of matter has remained to date unfulfilled. Despite a four-decade-long search, there are very few quantum spin liquid candidates. Current options include certain copper inorganic minerals and some organic salts, which contain rare, heavy or toxic elements.

In results published in two back-to-back papers on April 24 in the British scientific journal Nature Chemistry, the team came up with the new chemistry needed to make high-purity crystalline materials from the reaction of polyaromatic hydrocarbons (Fig. 2) with alkali metals for the first time.

Materials obtained from polyaromatic hydrocarbons (molecules with many aromatic rings) were proposed in the past as candidates of new superconductors -- materials with no electrical resistance and able to carry electricity without losing energy - devoid of toxic or rare elements. However, destruction of the molecular components in the synthetic treatments employed had inhibited any progress in this field.

"Removing the existing synthetic roadblock has led to very exciting developments," says Professor Kosmas Prassides. "We have already discovered that some of the structures of the new materials -- made entirely of carbon and hydrogen, the simplest possible combination -- show unprecedented magnetic properties -- spin liquid behavior (Fig. 3) -- with potential applications in superconductivity and quantum computing."

"It took us many years of work to achieve our breakthrough," adds Professor Matthew Rosseinsky. "But in the end, we succeeded in developing not one, but two complementary chemistry routes, which open the way to a rich variety of new materials with as-yet unknown properties."
-end-
The Tohoku/Liverpool groups worked with teams led by Dr Ryotaro Arita (RIKEN, Japan) and Professor Denis Arcon (University of Ljubljana, Slovenia). The research was supported by the Mitsubishi Foundation, JSPS KAKENHI, JST-ERATO Isobe Degenerate -Integration Project, the European Union and the Engineering and Physical Sciences Research Council (UK). Part of the research was carried out at the synchrotron X-ray facilities at the European Synchrotron Radiation Facility (France) and Diamond Light Source (UK).

Contact:

Kosmas Prassides
WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University
Email: k.prassides@wpi-aimr.tohoku.ac.jp
http://www.wpi-aimr.tohoku.ac.jp/prassides_labo/index.html

Matthew Rosseinsky
Department of Chemistry, University of Liverpool
Email: rossein@liv.ac.uk
https://www.liverpool.ac.uk/chemistry/staff/matthew-rosseinsky/DOI: 10.1038/NCHEM.2764
DOI: 10.1038/NCHEM.2765

Tohoku University

Related Hydrogen Articles:

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.
Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.
Observing hydrogen's effects in metal
Microscopy technique could help researchers design safer reactor vessels or hydrogen storage tanks.
The 'Batman' in hydrogen fuel cells
In a study published in Nature on Jan. 31, researchers at the University of Science and Technology of China (USTC) report advances in the development of hydrogen fuel cells that could increase its application in vehicles, especially in extreme temperatures like cold winters.
Paving the way for more efficient hydrogen cars
Hydrogen-powered vehicles emit only water vapor from their tailpipes, offering a cleaner alternative to fossil-fuel-based transportation.
More Hydrogen News and Hydrogen Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...