Managing chronic pain with light

April 24, 2018

Imagine that the movement of a single hair on your arm causes severe pain. For patients with neuropathic pain - a chronic illness affecting 7 to 8% of the European population, with no effective treatment - this can be a daily reality.

Scientists from EMBL Rome have now identified a special population of nerve cells in the skin that are responsible for sensitivity to gentle touch. These are also the cells that cause severe pain in patients with neuropathic pain. The research team, led by EMBL group leader Paul Heppenstall, developed a light-sensitive chemical that selectively binds to this type of nerve cell. By first injecting the affected skin area with the chemical and then illuminating it with near-infrared light, the targeted nerve cells retract from the skin's surface, leading to pain relief. Nature Communications publishes the results on 24 April 2018.

Strong curry

By clipping off the nerve endings with light, the gentle touch that can cause severe pain in neuropathic patients is no longer felt. "It's like eating a strong curry, which burns the nerve endings in your mouth and desensitizes them for some time," says Heppenstall. "The nice thing about our technique is that we can specifically target the small subgroup of neurons causing neuropathic pain."

There are many different types of nerve cells in your skin, which make you feel specific sensations like vibration, cold, heat, or normal pain. These cells are not affected by the light treatment at all. The skin is only desensitized to the gentlest touch, like a breeze, tickling, or an insect crawling across your skin.

Illumination vs. drugs

Previous attempts to develop drugs to treat neuropathic pain have mostly focused on targeting single molecules. "We think however, that there's not one single molecule responsible, there are many," Heppenstall explains. "You might be able to succeed in blocking one or a couple, but others would take over the same function eventually. With our new illumination method, we avoid this problem altogether."

Touch and pain were assessed by measuring reflexes in mice affected by neuropathic pain in their limbs. Affected mice will normally quickly withdraw their paw when it is gently touched. After the light therapy, however, they exhibited normal reflexes upon gentle touch. The effect of the therapy lasts for a few weeks, after which the nerve endings grow back and gentle touch causes pain again.

The team also investigated human skin tissue. The overall makeup of the tissue and the specifics of the neurons of interest appear to be similar, indicating that the method might be effective in managing neuropathic pain in humans. "In the end, our aim is to solve the problem of pain in both humans and animals," says Heppenstall. "Of course, a lot of work needs to be done before we can do a similar study in people with neuropathic pain. That's why we're now actively looking for partners and are open for new collaborations to develop this method further, with the hope of one day using it in the clinic."
-end-


European Molecular Biology Laboratory

Related Nerve Cells Articles from Brightsurf:

Nerve cells let others "listen in"
How many ''listeners'' a nerve cell has in the brain is strictly regulated.

Nerve cells with energy saving program
Thanks to a metabolic adjustment, the cells can remain functional despite damage to the mitochondria.

Why developing nerve cells can take a wrong turn
Loss of ubiquitin-conjugating enzyme leads to impediment in growth of nerve cells / Link found between cellular machineries of protein degradation and regulation of the epigenetic landscape in human embryonic stem cells

Unique fingerprint: What makes nerve cells unmistakable?
Protein variations that result from the process of alternative splicing control the identity and function of nerve cells in the brain.

Ragweed compounds could protect nerve cells from Alzheimer's
As spring arrives in the northern hemisphere, many people are cursing ragweed, a primary culprit in seasonal allergies.

Fooling nerve cells into acting normal
In a new study, scientists at the University of Missouri have discovered that a neuron's own electrical signal, or voltage, can indicate whether the neuron is functioning normally.

How nerve cells control misfolded proteins
Researchers have identified a protein complex that marks misfolded proteins, stops them from interacting with other proteins in the cell and directs them towards disposal.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Research confirms nerve cells made from skin cells are a valid lab model for studying disease
Researchers from the Salk Institute, along with collaborators at Stanford University and Baylor College of Medicine, have shown that cells from mice that have been induced to grow into nerve cells using a previously published method have molecular signatures matching neurons that developed naturally in the brain.

Bees can count with just four nerve cells in their brains
Bees can solve seemingly clever counting tasks with very small numbers of nerve cells in their brains, according to researchers at Queen Mary University of London.

Read More: Nerve Cells News and Nerve Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.