Future wearable device could tell how we power human movement

April 24, 2018

MADISON, Wis. -- For athletes and weekend warriors alike, returning from a tendon injury too soon often ensures a trip right back to physical therapy. However, a new technology developed by University of Wisconsin-Madison engineers could one day help tell whether your tendons are ready for action.

A team of researchers led by UW-Madison mechanical engineering professor Darryl Thelen and graduate student Jack Martin has devised a new approach for noninvasively measuring tendon tension while a person is engaging in activities like walking or running.

This advance could provide new insights into the motor control and mechanics of human movement. It also could apply to fields ranging from orthopedics, rehabilitation, ergonomics and sports. The researchers described their approach in a paper published today (April 23, 2018) in the journal Nature Communications.

Muscles generate movement at joints by pulling on tendons, which are bands of tissue that connect muscles to the skeleton. But assessing the forces transmitted by tendons inside the body of a living person is tricky.

"Currently, wearables can measure our movement, but do not provide information on the muscle forces that generate the movement," says Thelen, whose work is supported by the National Institutes of Health.

To overcome this challenge, Thelen and his collaborators developed a simple, noninvasive device that can be easily mounted on the skin over a tendon. The device enables the researchers to assess tendon force by looking at how the vibrational characteristics of the tendon change when it undergoes loading, as it does during movement.

This phenomenon is similar to a guitar string, where the tension in the string changes the vibrational response. When a guitar string is plucked, the speed of the wave traveling along the string, and thus the vibration frequency, is related to the tension, or force, applied to the string.

"We've found a way to measure the vibrational characteristics -- in this case, the speed of a shear wave traveling along a tendon -- and then we went further and determined how we can interpret this measurement to find the tensile stress within the tendon," Thelen says.

The new system for measuring wave speed is portable and relatively inexpensive. It includes a mechanical device that lightly taps the tendon 50 times per second. Each tap initiates a wave in the tendon, and two miniature accelerometers determine how quickly it travels.

The researchers have used the device to measure forces on the Achilles tendon, as well as the patellar and hamstring tendons. In each case, they can measure what happens in the tendon when users modify their gait -- for example, by changing step length or speed.

By measuring how muscles and tendons behave within the human body, this system could eventually enable clinicians to plan more effective treatments for patients suffering from musculoskeletal diseases and injuries.

"We think the potential of this new technology is high, both from a basic science standpoint and for clinical applications," Thelen says. "For example, tendon force measures could be used to guide treatments of individuals with gait disorders. It may also be useful to objectively assess when a repaired tendon is sufficiently healed to function normally and allow a person to return to activity."
-end-
The technology is being patented through the Wisconsin Alumni Research Foundation.

This research was supported by grants from the National Institutes of Health (AG051748 and HD092697) and a graduate research fellowship from the National Science Foundation.

CONTACT: Darryl Thelen, dgthelen@wisc.edu, 608-262-1902; Jack Martin, jamartin8@wisc.edu

DOWNLOAD PHOTOS: https://uwmadison.box.com/v/tendon-tension

University of Wisconsin-Madison

Related Physical Therapy Articles from Brightsurf:

NIH gene therapy startup to increase AAV gene therapy efficiency
Maximizing the efficiency of the adeno-associated virus (AAV) platform for gene therapy is the aim of a new pilot project of the National Institutes of Health (NIH).

Factors maximize impact of yoga, physical therapy on back pain in underserved population
New research shows that people with chronic low back pain (cLBP) have better results from yoga and physical therapy compared to reading evidence-based self-help materials.

New Human Gene Therapy editorial: Concern following gene therapy adverse events
Response to the recent report of the deaths of two children receiving high doses of a gene therapy vector (AAV8) in a Phase I trial for X-linked myotubular myopathy (MTM).

New hope for ACL injuries: Adding eccentric exercises could improve physical therapy outcomes
People with anterior cruciate ligament injuries can lose up to 40% of the muscle strength in the affected leg--with muscle atrophy remaining a big problem even after ACL reconstruction and physical therapy.

Dual therapy reduces risk for bleeding better than triple therapy for patients with atrial fibrillation
Use of dual therapy with a direct oral anticoagulant (DOAC) plus P2Y12 inhibitor was associated with reduced risk for major bleeding compared with triple therapy with a vitamin K antagonist (VKA) plus aspirin and P2Y12 inhibitor for patients with nonvalvular atrial fibrillation after percutaneous coronary intervention (PCI).

Light therapy for immune cells helps with side effects of cancer therapy
A frequent side effect of cancer immunotherapies can probably be stopped by light activation of immune cells, as researchers at the Medical Center -- University of Freiburg have shown.

Virtual physical therapy after knee replacement brings similar outcomes, lower costs
A virtual system for in-home physical therapy (PT) provides good outcomes for patients undergoing rehabilitation following total knee arthroplasty (TKA) -- with lower costs than traditional in-person PT, reports a study in the Jan.

Individualized physical therapy reduces incontinence, pain in men after prostate surgery
For decades, therapy to strengthen pelvic muscles has been the standard treatment for men dealing with urinary incontinence after prostate surgery.

Yoga and physical therapy as treatment for chronic lower back pain also improves sleep
Yoga and physical therapy (PT) are effective approaches to treating co-occurring sleep disturbance and back pain while reducing the need for medication, according to a new study from Boston Medical Center.

BU finds physical therapy access may reduce opioid prescriptions
Low back pain is one of the most common conditions Americans seek care for--and one of the more common reasons for an opioid prescription.

Read More: Physical Therapy News and Physical Therapy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.