Nav: Home

Getting fertilizer in the right place at the right rate

April 24, 2019

We've all heard about the magical combination of being in the right place at the right time. Well for fertilizer, it's more accurate to say it should be in the right place at the right rate. A group of Canadian scientists wanted to find the perfect combination for farmers in their northern prairies.

When farmers place fertilizer on a field, they'd like it to stay there. However, water that runs off a field can take some of the valuable fertilizer with it. In Canada this water can take two forms: rainfall runoff or snow melt. It's the latter type of water - snow melt - that causes the most runoff losses in the Canadian prairies.

Knowing how each form of runoff affects fertilizer will impact their "right place, right rate" calculation. Rainfall runoff and snow melt runoff may result in different fertilizer management recommendations. So, Jeff Schoenau from the University of Saskatchewan and his team focused on runoff from snowmelt.

"This work contributed to finding better practices for phosphorus fertilization," Schoenau explains. "These will help growers in the northern prairies make better use of their fertilizer. By applying the fertilizer in the right place at the right rate, growers can greatly lower the phosphorus loss from snowmelt runoff."

For the "right place" part of the fertilizer, they studied applying fertilizer to the top of the soil and leaving it there versus in-soil placement. The in-soil placement can involve placing the fertilizer in the furrow with the seed or next to it in a separate furrow. It can also refer to broadcasting fertilizer onto the soil followed by mixing it into the soil rather than leaving it on the surface.

They applied different amounts, or rates, of these two forms -- on-top-of-soil and in-soil -- in their study. Their results showed that the in-soil placement resulted in less phosphorus loss from snowmelt runoff.

"In the case of phosphorus fertilization practices, in-soil placement is helpful because it can help roots better access and take up phosphorus," he says. "Also, having the phosphorus placed in the soil rather than on the surface reduces its interaction with runoff from snowmelt in early spring."

Phosphorus is an important nutrient that plants need, so it is often applied to fields as fertilizer. It can come in different forms, and end up in different forms depending on the chemistry of the soil. When phosphorus fertilizer is applied, it undergoes transformation in the soil through reaction with minerals and organic matter. Ideally, it will end up in a form that the plants can use. However, too much of a good thing can be bad because it can run off and cause harm to nearby rivers and lakes.

"In our research we were able to employ some novel techniques to help us find the nature and origin of some of these forms in soil and water," he says. "Our main message here is that benefits can be realized by getting the phosphorus fertilizer into the soil where the roots are rather than leaving it on the surface."

Schoenau explains that runoff from snow is different than runoff from summer rains. The force of rainfall can loosen pieces of the soil containing phosphorus. Snowmelt runoff moves the element differently, mostly in its dissolved form from the soil and pieces of plants on the surface.

"In order to encourage growers to follow the best practices, it's important to document and understand why and how a specific practice like the one we tested works," he says. "I am both a scientist and farmer on the prairies interested in furthering the environmental and economic sustainability of our modern cropping systems."
-end-
Read more about this research in the Journal of Environmental Quality. This work was funded by Agriculture & Agri-Food Canada AgriInnovation Program, the Foundation for Agronomic Research, and Fertilizer Canada. Additional support was provided from the Natural Sciences and Engineering Research Council of Canada, and Agriculture & Agri-Food Canada A-Base Project 1555.

American Society of Agronomy

Related Phosphorus Articles:

Zinc's negative effects on mineral digestibility can be mitigated, study shows
Researchers at the University of Illinois have shown that a common strategy for reducing postweaning digestive problems in pigs may have negative effects on calcium and phosphorus digestibility, and are suggesting management practices to counteract the effects.
Iron deficiency restrains marine microbes
Iron is a critical nutrient in the ocean. Its importance for algae and the nitrogen cycle has already been investigated in detail.
A better way to manage phosphorus?
A new project proposes a restructured index to build on phosphorus management efforts in farm fields in New York state and beyond.
Nitrogen, phosphorus from fertilizers and pet waste polluting urban water
New research from the University of Minnesota points to lawn fertilizers and pet waste as the dominant sources of nitrogen and phosphorus pollutants in seven sub-watersheds of the Mississippi River in Saint Paul, Minn.
Study quantifies effect of 'legacy phosphorus' in reduced water quality
For decades, phosphorous has accumulated in Wisconsin soils. Though farmers have taken steps to reduce the quantity of the agricultural nutrient applied to and running off their fields, a new study from the University of Wisconsin-Madison reveals that a 'legacy' of abundant soil phosphorus in the Yahara watershed of Southern Wisconsin has a large, direct and long-lasting impact on water quality.
Increased water availability from climate change may release more nutrients into soil in Antarctica
As climate change continues to impact the Antarctic, glacier melt and permafrost thaw are likely to make more liquid water available to soil and aquatic ecosystems in the McMurdo Dry Valleys, potentially providing a more nutrient-rich environment for life, according to a Dartmouth study recently published in Antarctic Science.
UD's Jaisi wins NSF Career Award for research on phosphorus in soil
Much like criminal forensic scientists use fingerprints to identify guilty parties at crime scenes, the University of Delaware's Deb Jaisi utilizes isotopic fingerprinting technology to locate the sources of phosphorus compounds and studies the degraded products they leave behind in soil and water.
Wastewater research may help protect aquatic life
New wastewater system design guidelines developed at UBC can help municipal governments better protect aquatic life and save millions of dollars a year.
Safe fog
Safety combined with power and effectiveness is one of the most important targets in the development of pyrotechnic obscurants.
How your diet can influence your environmental impact
The impact of our dietary choices on the global phosphorus footprint shouldn't be neglected, shows a new study.

Related Phosphorus Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".