Nav: Home

New nanomedicine slips through the cracks

April 24, 2019

In a recent study in mice, researchers found a way to deliver specific drugs to parts of the body that are exceptionally difficult to access. Their Y-shaped block catiomer (YBC) binds with certain therapeutic materials forming a package 18 nanometers wide. The package is less than one-fifth the size of those produced in previous studies, so can pass through much smaller gaps. This allows YBCs to slip through tight barriers in cancers of the brain or pancreas.

The fight against cancer is fought on many fronts. One promising field is gene therapy, which targets genetic causes of diseases to reduce their effect. The idea is to inject a nucleic acid-based drug into the bloodstream - typically small interfering RNA (siRNA) - which binds to a specific problem-causing gene and deactivates it. However, siRNA is very fragile and needs to be protected within a nanoparticle or it breaks down before reaching its target.

"siRNA can switch off specific gene expressions that may cause harm. They are the next generation of biopharmaceuticals that could treat various intractable diseases, including cancer," explained Associate Professor Kanjiro Miyata of the University of Tokyo, who jointly supervised the study. "However, siRNA is easily eliminated from the body by enzymatic degradation or excretion. Clearly a new delivery method was called for."

Presently, nanoparticles are about 100 nanometers wide, one-thousandth the thickness of paper. This is small enough to grant them access to the liver through the leaky blood vessel wall. However some cancers are harder to reach. Pancreatic cancer is surrounded by fibrous tissues and cancers in the brain by tightly connected vascular cells. In both cases the gaps available are much smaller than 100 nanometers. Miyata and colleagues created an siRNA carrier small enough to slip through these gaps in the tissues.

"We used polymers to fabricate a small and stable nanomachine for the delivery of siRNA drugs to cancer tissues with a tight access barrier," said Miyata. "The shape and length of component polymers is precisely adjusted to bind to specific siRNAs, so it is configurable."

The team's nanomachine is called a Y-shaped block catiomer, as two component molecules of polymeric materials are connected in a Y-shape formation. The YBC has several sites of positive charge which bind to negative charges in siRNA. The number of positive charges in YBC can be controlled to determine which kind of siRNA it binds with. When YBC and siRNA are bound, they are called a unit polyion complex (uPIC), which are under 20 nanometers in size.

"The most surprising thing about our creation is that the component polymers are so simple, yet uPIC is so stable," concluded Miyata. "It has been a great but worthy challenge over many years to develop efficient delivery systems for nucleic acid drugs. It is early days, but I hope to see this research progress from mice to help treat people with hard-to-treat cancers one day."
-end-
Journal article

Sumiyo Watanabe, Hyun Jin Kim, Hiroyuki Chaya, Satoshi Uchida, Satomi Ogura, Horacio Cabral, Yu Matsumoto, Hiroshi Fukuhara, Masaomi Nangaku, Kensuke Osada, Kanjiro Miyata, Kazunori Kataoka, et al. In vivo rendezvous of small nucleic acid drugs with charge-matched block catiomers to target cancers. Nature Communications. DOI: 10.1038/s41467-019-09856-w

Funding Program for World-Leading Innovative R&D in Science and Technology (FIRST) from JSPS. Center of Innovation (COI) Program from JST. JSPS KAKENHI Grants 24659411, 25000006, 25282141 and 17H02098. Project for Development of Innovative Research on Cancer Therapeutics (P-DIRECT) from AMED. Project for Cancer Research and Therapeutic Evolution (P-CREATE) from AMED. Basic Science and Platform Technology Program for Innovative Biological Medicine (IBIOMED) from AMED.

Related links

Miyata Laboratory

http://www.bmm.t.u-tokyo.ac.jp/english/index.html

Department of Materials Engineering

http://www.material.t.u-tokyo.ac.jp/e/

Graduate School of Engineering

https://www.t.u-tokyo.ac.jp/soee/

Research Contact

Associate Professor Kanjiro Miyata
Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, JAPAN
Tel: +81-3-5841-0862
Email: miyata@bmw.t.u-tokyo.ac.jp

Press Contact

Mr. Rohan Mehra
Division for Strategic Public Relations, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN
Tel: +81-3-5841-0876
Email: press-releases.adm@gs.mail.u-tokyo.ac.jp

About the University of Tokyo

The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 2,000 international students. Find out more at https://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

University of Tokyo

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.