Nav: Home

Study reveals vast diversity of ocean microbes

April 24, 2019

Advanced molecular techniques have revealed the diversity of a little-understood group of ocean microbes called protists, according to a new publication in Scientific Reports. The project analyzed samples collected by the global Tara Oceans expedition, documenting genomes that will help researchers identify protists throughout the ocean.

"So many ocean protists cannot be grown in the lab, so we must find ways to interrogate them in their environment," said Mike Sieracki, lead author of the study. "Every drop of seawater contains microbial ecosystems we know very little about, and it is urgently important to understand this fundamental ecosystem of our ocean planet, Earth, and how it reacts to change."

Protists form some of the ocean's most complex relationships with other members of the microbial food web, including parasitism and approaches to eating that combine both photosynthesis and predation. The research team analyzed protists from across the Indian Ocean and Mediterranean Sea using single cell genomics, a suite of molecular techniques that reveals the genetic blueprints of individual cells. This is the first time that this approach has been applied to entire microbial communities from different places.

Sieracki is currently a program director in biological oceanography at the National Science Foundation. He conducted this research while working as a senior research scientist at Bigelow Laboratory for Ocean Sciences, where he helped found the institute's Single Cell Genomics Center. The researchers used the Center's advanced technology to individually sort and analyze the protists, revealing genetic code that had never been identified before.

"Protists are the ocean's most numerous predators, yet we still know very little about who they are and what they do in nature," said Ramunas Stepanauskas, a senior research scientist and the director of the Single Cell Genomics Center. "We are starting to unveil the full extent of the diversity and ecological roles of these fascinating components of marine ecosystems."

The researchers documented over 900 single cell genomes, which scientists around the world will be able to reference when identifying protists in the future. This crucial step will help researchers map microbial communities using metagenomics, a powerful way of simultaneously analyzing entire communities.

The project, funded by the National Science Foundation, also represents an important finding and significant output of the Tara Oceans expedition. This sailing voyage sampled the global ocean between 2009 and 2013, taking a snapshot of the microbial communities thriving around the world and capturing the incredible variability of planktonic life. Sieracki and Nicole Poulton, another author on the paper, both sailed on the expedition as lead scientists.

"Protists are some of the next great unknowns out in the open ocean," said Poulton, a research scientist at Bigelow Laboratory and director of the Facility for Aquatic Cytometry. "Although they are much less abundant than bacteria, we are finding that examining protists reveals much more complexity within marine ecosystems."

Bigelow Laboratory houses the samples collected by the Tara Oceans expedition for single cell analysis. Poulton hopes to use the same techniques to explore protists from other ocean regions, progressively filling in the gaps in our knowledge of the ocean and helping other researchers map microbial communities in greater detail.

"Single cell genomics has allowed us to capture and understand the biodiversity in the ocean at a much different level than what was previously available," Poulton said. "These genomes will allow us to learn how these important microbes function within their environment."
-end-
Bigelow Laboratory for Ocean Sciences is an independent, nonprofit research institute on the coast of Maine. Its research ranges from the microscopic life at the bottom of marine food webs to large-scale ocean processes that affect the entire planet. Recognized as a leader in Maine's emerging innovation economy, the Laboratory's research, education, and technology transfer programs are contributing to significant economic growth. Learn more at bigelow.org, and join the conversation on Facebook, Instagram, and Twitter.

Bigelow Laboratory for Ocean Sciences

Related Diversity Articles:

Bursts of diversity in the gut microbiota
The diversity of bacteria in the human gut is an important biomarker of health, influences multiple diseases, such as obesity and inflammatory bowel diseases and affects various treatments.
Underestimated chemical diversity
An international team of researchers has conducted a global review of all registered industrial chemicals: some 350,000 different substances are produced and traded around the world -- well in excess of the 100,000 reached in previous estimates.
New world map of fish genetic diversity
An international research team from ETH Zurich and French universities has studied genetic diversity among fish around the world for the first time.
Biological diversity as a factor of production
Can the biodiversity of ecosystems be considered a factor of production?
Fungal diversity and its relationship to the future of forests
Stanford researchers predict that climate change will reduce the diversity of symbiotic fungi that help trees grow.
Brain diseases with molecular diversity
Parkinson's and multisystem atrophy (MSA) - both of them neurodegenerative diseases - are associated with the accumulation of alpha-synuclein proteins in the brain.
United in musical diversity
Is music really a 'universal language'? Two articles in the most recent issue of Science support the idea that music all around the globe shares important commonalities, despite many differences.
Genetic diversity facilitates cancer therapy
Cancer patients with more different HLA genes respond better to treatment.
A new ranavirus threatens US amphibian diversity
In a study published in the Oct. 15 issue of Ecological Modelling, a team of University of Tennessee researchers along with a colleague from the University of Florida model how a chimeric Frog virus 3 (FV3)-like ranavirus, also known as RCV-Z2, can spread rapidly throughout a population of North American wood frog (Lithobates sylvaticus) tadpoles.
New way to target cancer's diversity and evolution
Scientists have revealed close-up details of a vital molecule involved in the mix and match of genetic information within cells -- opening up the potential to target proteins of this family to combat cancer's diversity and evolution.
More Diversity News and Diversity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.