Nav: Home

A close look at lithium batteries

April 24, 2019

Batteries with metallic lithium anodes offer enhanced efficiency compared to conventional lithium-ion batteries because of their higher capacity. However, safety concerns and a short lifespan stand in the way. To better analyze the causes of malfunctions and premature failure of such batteries, researchers have developed a technique that visualizes the distribution of active lithium on the anode and differentiates between dendrites and "dead" lithium. As reported in the journal Angewandte Chemie, the technique makes use of a fluorescent dye.

As a lithium anode battery discharges, the anode releases electrons to the circuit and positively charged lithium ions to the electrolyte. As the battery is recharged, this process is reversed, depositing lithium back onto the anode. Unfortunately, deposition is not uniform and can lead to the formation of branched structures known as dendrites, which can become so large that they cause a short circuit. In addition, their higher surface area increases undesired side reactions between lithium and the components of the electrolyte, which deactivates the lithium. In the end, some dendrites consist entirely of this "dead" lithium. Although both dendrites and dead lithium impede the power of the battery, they each have a completely different effect on the anode. Because the morphology is the same in both cases, it has not previously been possible to differentiate between them with conventional microscopy techniques.

To better understand the undesirable processes that occur at lithium anodes, researchers working with Shougang Chen, Shanmu Dong, and Guanglei Cui at the Chinese Academy of Sciences and the Ocean University of China in Qingdao (China), have now developed a novel technique that allows them to analyze the distribution of active lithium species on the surface of the anode and to differentiate between lithium dendrites and side products.

The surfaces of used lithium anodes are coated with a fluorescent dye called 9,10-dimethylanthracene (DMA). Lithium reacts with DMA, quenching its fluorescence. Areas with active lithium therefore appear dark, while areas with inactive lithium species continue to fluoresce. The morphology of the anode is not affected.

For lithium metal batteries to be used safely, it is very important to identify the causes of potentially dangerous malfunctions. With this new method, it is possible to detect dendrites that have led to the failure of a lithium battery. In the development of new batteries, this technique also aids the search for better electrolytes and provides predictions regarding the irregular deposition of lithium. Identifying the locations where lithium dendrites form preferentially may help to optimize the structure of new batteries.
-end-
About the Author

Prof. Dr. Guanglei Cui is a professor and the leader of the Biomimetics for Energy Storage Group, the director of the Applied Energy Technology Division, and the deputy director of the Academic Committee of Qingdao Institute of Bioenergy and Bioprocess Technology. He was a recipient of the National Science Fund for Distinguished Young Scholars in 2016. His research topics include sustainable and highly efficient energy-storage materials, all-solid-state batteries, and novel energy devices.

http://fsny.qibebt.ac.cn/

Wiley

Related Dendrites Articles:

Scientists pinpoint cause of harmful dendrites and whiskers in lithium batteries
Scientists have uncovered a root cause of the growth of needle-like structures -- known as dendrites and whiskers -- that plague lithium batteries, sometimes causing a short circuit, failure, or even a fire.
Coating developed by Stanford researchers brings lithium metal battery closer to reality
A Stanford-led research team invented a new coating that could finally make lightweight lithium metal batteries safe and long lasting, which could usher in the next generation of electric vehicles.
Super-resolution microscopy sheds light on how dementia protein becomes dysfunctional
University of Queensland researchers have used super-resolution microscopy to observe key molecules at work inside living brain cells, further unravelling the puzzle of memory formation and the elusive causes of dementia.
Neurons' 'antennae' are unexpectedly active in neural computation
Dendrites, the branching extensions of most brain cells, appear to play a surprisingly large role in neurons' computational ability, according to a new MIT study.
New research offers insight into the proteins in the brain that detect cannabis
Researchers at the University of Bristol have made new progress in understanding how cannabinoid receptors (CB1Rs), the proteins that detect the active components of marijuana, are controlled in the brain.
A close look at lithium batteries
Batteries with metallic lithium anodes offer enhanced efficiency compared to conventional lithium-ion batteries because of their higher capacity.
New study in mice reveals unexpected place for learning, memory in the brain
Columbia neuroscientists have revealed that a simple brain region, known for processing basic sensory information, can also guide complex feats of mental activity.
Whiskers, surface growth and dendrites in lithium batteries
Researchers at Washington University in St. Louis take a closer look at lithium metal plating and make some surprising findings that might lead to the next generation of batteries.
Electrical properties of dendrites help explain our brain's unique computing power
MIT neuroscientists have discovered that human dendrites have very different electrical properties from those of other species.
Study pinpoints what makes human neurons unique
Human neurons are much larger than those of model organisms, so it's been unclear whether size makes a difference in our brain's computational power.
More Dendrites News and Dendrites Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.