Nav: Home

New nanomaterial to replace mercury

April 24, 2019

The nano research team led by professors Helge Weman and Bjørn-Ove Fimland at the Norwegian University of Science and Technology's (NTNU) Department of Electronic Systems has succeeded in creating light-emitting diodes, or LEDs, from a nanomaterial that emits ultraviolet light.

It is the first time anyone has created ultraviolet light on a graphene surface.

"We've shown that it's possible, which is really exciting," says PhD candidate Ida Marie Høiaas, who has been working on the project with PhD candidate Andreas Liudi Mulyo.

"We've created a new electronic component that has the potential to become a commercial product. It's non-toxic and could turn out to be cheaper, and more stable and durable than today's fluorescent lamps. If we succeed in making the diodes efficient and much cheaper, it's easy to imagine this equipment becoming commonplace in people's homes. That would increase the market potential considerably," Høiaas says.

Dangerous - but useful

Although it's important to protect ourselves from too much exposure to the sun's UV radiation, ultraviolet light also has very useful properties.

This applies especially to UV light with short wavelengths of 100-280 nanometres, called UVC light, which is especially useful for its ability to destroy bacteria and viruses.

Fortunately, the dangerous UVC rays from the sun are trapped by the ozone layer and oxygen and don't reach the Earth. But it is possible to create UVC light, which can be used to clean surfaces and hospital equipment, or to purify water and air.

The problem today is that many UVC lamps contain mercury. The UN's Minamata Convention, which went into effect in 2017, sets out measures to phase out mercury mining and reduce mercury use.

The convention was named for a Japanese fishing village where the population was poisoned by mercury emissions from a factory in the 1950s.

Building on graphene

A layer of graphene placed on glass forms the substrate for the researchers' new diode that generates UV light.

Graphene is a super-strong and ultra-thin crystalline material consisting of a single layer of carbon atoms. Researchers have succeeded in growing nanowires of aluminium gallium nitride (AlGaN) on the graphene lattice.

The process takes place in a high temperature vacuum chamber where aluminium and gallium atoms are deposited or grown directly on the graphene substrate - with high precision and in the presence of nitrogen plasma.

This process is known as molecular beam epitaxy (MBE) and is conducted in Japan, where the NTNU research team collaborates with Professor Katsumi Kishino at Sophia University in Tokyo.

Let there be light

After growing the sample, it is transported to the NTNU NanoLab where the researchers make metal contacts of gold and nickel on the graphene and nanowires. When power is sent from the graphene and through the nanowires, they emit UV light.

Graphene is transparent for light of all wavelengths, and the light emitted from the nanowires shines through the graphene and glass.

"It's exciting to be able to combine nanomaterials this way and create functioning LEDs, says Høiaas.

Multi-million dollar market

An analysis has calculated that the market for UVC products will increase by NOK 6 billion, or roughly US $700 million between now and 2023. The growing demand for such products and the phase- out of mercury are expected to yield an annual market increase of almost 40 per cent.

Concurrently with her PhD research at NTNU, Høiaas is working with the same technology on an industrial platform for CrayoNano. The company is a spinoff from NTNU's nano research group.

Use less electricity more cheaply

UVC LEDs that can replace fluorescent bulbs are already on the market, but CrayoNano's goal is to create far more energy-efficient and cheaper diodes.

According to the company, one reason that today's UV LEDs are expensive is that the substrate is made of expensive aluminium nitride. Graphene is cheaper to manufacture and requires less material for the LED diode.

Further development needed

Høiaas believes that a lot of improvements are needed before the process developed at NTNU can be scaled up to industrial production level. Necessary upgrades include conductivity and energy efficiency, more advanced nanowire structures and shorter wavelengths to create UVC light.

CrayoNano has progressed further, but their results have not yet been published.

"CrayoNano's goal is to commercialize the technology sometime in 2022," says Høiaas.
-end-
Reference: GaN/AlGaN Nanocolumn Ultraviolet Light-Emitting Diode Using Double-Layer Graphene as Substrate and Transparent Electrode. Ida Marie Høiaas, Andreas Liudi Mulyo, Per Erik Vullum, Dong-Chul Kim, Lyubomir Ahtapodov, Bjørn-Ove Fimland, Katsumi Kishino, and Helge Weman

Nano Letters 2019 19 (3), 1649-1658
DOI: 10.1021/acs.nanolett.8b04607

Norwegian University of Science and Technology

Related Graphene Articles:

New chemical method could revolutionize graphene
University of Illinois at Chicago scientists have discovered a new chemical method that enables graphene to be incorporated into a wide range of applications while maintaining its ultra-fast electronics.
Searching beyond graphene for new wonder materials
Graphene, the two-dimensional, ultra lightweight and super-strong carbon film, has been hailed as a wonder material since its discovery in 2004.
New method of characterizing graphene
Scientists have developed a new method of characterizing graphene's properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials.
Chemically tailored graphene
Graphene is considered as one of the most promising new materials.
Beyond graphene: Advances make reduced graphene oxide electronics feasible
Researchers have developed a technique for converting positively charged (p-type) reduced graphene oxide (rGO) into negatively charged (n-type) rGO, creating a layered material that can be used to develop rGO-based transistors for use in electronic devices.
The Graphene 2017 Conference connects Barcelona with the international graphene-based industry
This prestigious Conference to be held at the Barcelona International Convention Centre (March 28-31) aims to bring together academia and industry to integrate new graphene technologies into practical applications.
Graphene from soybeans
A breakthrough by CSIRO-led scientists has made the world's strongest material more commercially viable, thanks to the humble soybean.
First use of graphene to detect cancer cells
By interfacing brain cells onto graphene, researchers at the University of Illinois at Chicago have shown they can differentiate a single hyperactive cancerous cell from a normal cell, pointing the way to developing a simple, noninvasive tool for early cancer diagnosis.
Development of graphene microwave photodetector
DGIST developed cryogenic microwave photodetector which is able to detect 100,000 times smaller light energy compared to the existing photedetectors.
Adding hydrogen to graphene
IBS researchers report a fundamental study of how graphene is hydrogenated.

Related Graphene Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...