Nav: Home

Reinforced concrete wall damage may be larger than expected in major Seattle quake

April 24, 2019

Using ground motions generated for a range of simulated magnitude 9 earthquakes in the Pacific Northwest, researchers are testing how well reinforced concrete walls might stand up under such seismic events.

The walls may not fare so well, especially within the city of Seattle, said University of Washington postdoctoral researcher Nasser A. Marafi, who studied the phenomenon for his Ph.D. dissertation.

The ground motions produced by a long duration, large magnitude earthquake would be amplified in the deep sedimentary basin that underlies the city, and most buildings under 24 stories in the city are not designed to take into account the potential damage produced by such basin effects, Marafi reported at the 2019 SSA Annual Meeting.

"What we found is that the results are actually a lot more damaging than what we would expect," Marafi said.

With a magnitude 9 earthquake, the maximum story drifts--describing the displacement between consecutive floors on a building--predicted for the reinforced concrete structures are on average 11% larger and are more variable than those used for earthquake building codes that do not account for basin effects.

Marafi's analysis can't always predict whether a particular structure made with reinforced concrete will collapse during a magnitude 9 earthquake in Seattle, but the study suggests that structures designed to the current minimum seismic standards may have up to a 33% probability on average of collapse, depending on their design specifications.

His project is part of a larger research effort by scientists at the University of Washington and the U.S. Geological Survey to learn more about what to expect from a magnitude 9 earthquake in the Pacific Northwest. Although there is a historic and prehistoric record of these massive and damaging earthquakes in the Cascadia Subduction Zone, there are no seismic recordings of large magnitude earthquakes in the region.

To remedy this, the researchers have used computer simulations to generate a set of ground motions that might be expected under numerous magnitude 9 scenarios in the region. "Then my work takes the ground motions that those simulations predict and asks what this means for building response. How do buildings respond to this kind of shaking that we're predicting from this simulation?" said Marafi.

Marafi used 30 of these ground motions to test against 32 computer generated models of reinforced concrete-core-wall structures, between four and 40 stories high. Before designing the concrete models, he met with engineers practicing in Seattle to make sure that his designs were representative of how buildings are currently constructed in the city.

Seismic waves that pass through the deep and soft sediments that lie beneath Seattle slow down and pile up their energy, resulting in damaging large amplitude waves that may be trapped in the basin. Seattle buildings that are 24 stories or less do not have to be designed to withstand these basin effects, but Marafi said this is changing. The next version of the National Seismic Hazard Maps that inform building codes, for instance, will include basin effects for Seattle, and the city is likely to include some basin effects in its design codes for structures 24 stories or less by 2021, he said.

The changes mean that existing buildings in the city may need to be retrofitted and that new buildings would be built with "more steel and more concrete, so that the structure is slightly bigger and ends up being a stronger, stiffer building," Marafi said.
-end-


Seismological Society of America

Related Concrete Articles:

Concrete solutions that lower both emissions and air pollution
Some common strategies to reduce the greenhouse gas emissions of concrete production could have unintended consequences for local air pollution and related health damages, according to a study from the University of California, Davis.
'Wood' you like to recycle concrete?
Scientists at The University of Tokyo studied a method for recycling unused concrete with wood fibers.
Bacteria and sand engineered into living concrete
Cement and concrete haven't changed much as technology in over a hundred years, but researchers in Colorado are revolutionizing building materials by literally bringing them to life.
'Self-cleaning' concrete could keep buildings looking new (video)
Building materials that clean themselves could save immense time and labor in homes and businesses, as well as reduce disease risk in settings such as hospitals.
Finding out the factors that most influence the steel corrosion in reinforced concrete
This process causes structures to deteriorate internally and can even cause buildings to collapse.
Concrete with improved impact endurance for defense structures developed at FEFU
Engineers from the Military Studies Center at Far Eastern Federal University (MSC FEFU) developed a brand-new concrete with improved impact endurance and up to 40% made of waste: rice husk cinder, limestone crushing waste, and siliceous sand.
Ashes to concrete
Drexel University researchers have developed a process for turning the solid waste products of coal power plants into a useful ingredient that could improve properties of concrete.
Corrosion resistance of steel bars in concrete when mixed with aerobic microorganisms
Dissolved oxygen in pore solution is often a controlling factor determining the rate of the corrosion process of steel bars in concrete.
FEFU scientists developed brand-new rapid strength eco-concrete
Engineers of Far Eastern Federal University (FEFU) with colleagues from Kazan State University of Architecture and Engineering (KSUAE) have developed a brand-new rapid strength concrete, applying which there is possible to accelerate the tempo of engineering structures manufacturing by three to four times.
Brain processes concrete and abstract words differently
A new review explores the different areas of the brain that process the meaning of concrete and abstract concepts.
More Concrete News and Concrete Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.