Nav: Home

A good night's sleep may be in sight

April 24, 2019

A third of all Americans have difficulty with sleeping, and many of them turn to melatonin supplements to catch some Zs. However, scientists don't fully understand melatonin's role in the biological clock, which has made it difficult to develop drugs for sleep disorders without several side effects.

Now, an international team of scientists has shed much-needed light on melatonin's effects, opening the door to the development of new drugs for sleep disorders -- and other health issues affected by melatonin. They developed 3D models of the tiny antennae -- called receptors -- on the surface of cells that synchronize the body's internal clock with the day and night cycle.

"Our goal is to provide the structural information to other researchers who can use it for designing new drug compounds or to study mutations of these receptors in patients," said corresponding author Vadim Cherezov, a scientist at the Bridge Institute at USC Michelson Center for Convergent Bioscience.

Creating the 3D maps of the two melatonin receptors, MT1 and MT2, is critical for understanding how the biological clock works. The scientists can use this information to design drug molecules that bind to the melatonin receptors and monitor the potential effects. The benefits could go beyond improving sleep.

"This data will help us design drugs that interact only with these receptors, with the hope we can treat a variety of conditions including diabetes, cancers, and sleep disorders, in a more targeted way," said Dr. Bryan L. Roth, pharmacology professor at the UNC School of Medicine.

The findings on the melatonin receptors were published in two letters on Wednesday, April 24, in the journal Nature.

Melatonin comes from the 'soul'

Melatonin is generated in the center of the brain by the pineal gland, once described by the philosopher Descartes as the "soul" of the brain and body.

Humans respond naturally to daylight changes through the pineal gland, near the hypothalamus. As night falls, the gland produces more melatonin, which then binds to the MT1 and MT2 receptors of the cells. Before dawn, the gland decreases melatonin levels, signaling that it's time to wake.

Two of hundreds

MT1 and MT2 are among an estimated 800 receptors in the human body. These receptors, known as "G protein-coupled receptors," (GPCRs) appear on the surface of a cell. The receptors act as a sort of email inbox, relaying information into the cell to set off a cascade of activity.

About a third of all drugs on the market are designed to bind with GPCRs. Each receptor has a different role in regulating functions in the body, many of which are critical for basic survival, such as hunger and reproductivity. The bulk of these receptors also have some role in the human olfactory system -- taste and smell.

Scientists around the world have obtained structures of less than one-tenth of these receptors so far. MT1 and MT2 are among the latest. The MT1 and MT2 receptors are important for multiple processes, including reproduction and even some cancers.

"By comparing the 3D structures of the MT1 and MT2 receptors, we can better discern the unique, structural differences that distinguish the two receptors from each other -- and their roles in the biological clock," said Wei Liu of Arizona State University's Biodesign Institute. "Armed with this knowledge, it becomes easier to design drug-like molecules that will bind to only one receptor or the other, but not both. This selective binding is important as it will minimize unwanted side-effects."

The structures of both receptors were obtained using a laser, called the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory, which uses X-rays to take stop-action pictures of the receptor atoms and molecules in motion.

"Due to the tiny size of the crystals, it wouldn't have been possible to make these measurements anywhere other than LCLS," says co-author Alex Batyuk, a scientist at SLAC National Accelerator Laboratory. "Because of the extreme brightness and short pulse duration of LCLS, we were able to collect hundreds of thousands of images of the crystals to figure out the three-dimensional structure of these receptors."
-end-
About the study

The research is the result of a collaboration among scientists at USC, Arizona State University's Biodesign Institute and Department of Physics, SLAC National Accelerator Laboratory, University of Buffalo, University of North Carolina, and the Université de Lille in France.

The work was supported by National Institutes of Health grants (R35 GM127086, R21 DA042298, R01 GM124152, and U24DK116195), the NIMH Psychoactive Drug Screening Program (contract F31-NS093917), the National Science Foundation BioXFEL Science and Technology Center 1231306, EMBO ALTF 677-2014, HFSP long-term fellowship LT000046/2014-L, and a postdoctoral fellowship from the Swedish Research Council, SLAC, supported by the U.S. Department of Energy's Office of Science via contract DE-AC02-76SF00515.

The studies are available online at Nature: https://doi.org/10/1038/s41586-019-1144-0

https://doi.org/10.1038/s41586-019-1141-3

University of Southern California

Related Biological Clock Articles:

Novel melatonin receptor molecules make possible therapies to adjust biological clock
Researchers have discovered through a vast and novel computational library the first molecules that can modulate circadian rhythms by binding with high selectivity to the MT1 melatonin receptor in the brain.
Our biological clock plays crucial role in healing from surgery
If you have just had knee, shoulder or hip surgery, you may want to take anti-inflammatories in the morning or at noon, but not at night.
Study suggests biological clock is key to reducing heart damage from radiation therapy
A new study suggests that the biological clock is involved in heart toxicity from radiation therapy and could be harnessed as part of a preventive strategy.
Study finds dopamine, biological clock link to snacking, overeating and obesity
A new study finds that the pleasure center of the brain and the brain's biological clock are linked, and that high-calorie foods -- which bring pleasure -- disrupt normal feeding schedules, resulting in overconsumption.
Eating in sync with biological clock could replace problematic diabetes treatment
A new Tel Aviv University study finds that a starch-rich breakfast consumed early in the morning coupled with a small dinner could replace insulin injections and other diabetes medications for many diabetics.
Compound controls biological clock with light
A chemical cage suppresses the activity of a biological clock regulator in the dark and releases it with light, showing potential for future treatments of circadian-clock-related diseases.
Researchers are finding molecular mechanisms behind women's biological clock
Throughout life, women's fertility curve goes up and down, and in a new study led by the University of Copenhagen, researchers have now shown why.
Study shows the biological clock influences immune response efficiency
According to a recent study published in Proceedings of the National Academy of Sciences of the United States of America, the biological clock influences immune response efficacy.
In mice, feeding time influences the liver's biological clock
The timing of food intake is a major factor driving the rhythmic expression of most genes in the mouse liver, researchers report April 16, 2019 in the journal Cell Reports.
Cancer has a biological clock and this drug may keep it from ticking
Scientists at USC Michelson Center and Japan's Nagoya University find and test a promising drug that stops cancer by interfering with the cancer cells' metabolism and other circadian-related functions.
More Biological Clock News and Biological Clock Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.