Nav: Home

Water molecules dance in three

April 24, 2020

An international team of scientists lead by Professor Martina Havenith from Ruhr-Universität Bochum (RUB) has been able to shed new light on the properties of water at the molecular level. In particular, they were able to describe accurately the interactions between three water molecules, which contribute significantly to the energy landscape of water. The research could pave the way to better understand and predict water behaviour at different conditions, even under extreme ones. The results have been published online in the journal Angewandte Chemie on 19 April 2020.

Interactions via vibrations

Despite water is at first glance looking like a simple liquid it has many unusual properties, one of them being that it is less dense when it is frozen than when it is liquid. In the simplest way liquids are described by the interaction of their direct partners, which are mostly sufficient for a good description, but not in the case of water: The interactions in water dimers account for 75 per cent of the energy that keeps water together. Martina Havenith, head of the Bochum-based Chair of Physical Chemistry II and spokesperson for the Ruhr Explores Solvation (Resolv) Cluster of Excellence, and her colleagues from Emory University in Atlanta, US, recently published an accurate description of the interactions related to the water dimer. In order to get access to the cooperative interactions, which make up 25 per cent of the total water interaction, the water trimer had to be investigated.

Now, the team lead by Martina Havenith in collaboration with colleagues from Emory University and of the University of Mississipi, US, has been able to describe for the first time in an accurate way the interaction energy among three water molecules. They tested modern theoretical descriptions against the result of the spectroscopic fingerprint of these intermolecular interactions.

Obstacles for experimental research

Since more than 40 years, scientists have developed computational models and simulations to describe the energies involved in the water trimer. Experiments have been less successful, despite some pioneer insights in gas phase studies, and they rely on spectroscopy. The technique works by irradiating a water sample with radiation and recording how much light has been absorbed. The obtained pattern is related to the different type of excitations of intermolecular motions involving more than one water molecules. Unfortunately, to obtain these spectroscopic fingerprints for water dimers and trimers, one needs to irradiate in the terahertz frequency region. And laser sources that provide high-power have been lacking for that frequency region.

This technical gap has been filled only recently. In the current publication, the RUB scientists used the free electron lasers at Radboud University in Nijmegen in The Netherlands, which allows for high powers in the terahertz frequency region. The laser was applied through tiny droplets of superfluid helium, which is cooled down at extremely low temperatures, at minus 272,75 degrees Celsius. These droplets can collect water molecules one by one, allowing to isolate small aggregates of dimers and trimers. In this way the scientists were able to irradiate exactly the molecules they wanted to and to acquire the first comprehensive spectrum of the water trimer in the terahertz frequency region.

The experimental observations of the intermolecular vibrations were compared to and interpreted using high level quantum calculations. In this way the scientists could analyse the spectrum and assign up to six different intermolecular vibrations.
-end-


Ruhr-University Bochum

Related Water Molecules Articles:

Chemistry's Feng Lin Lab is splitting water molecules for a renewable energy future
Feng Lin, an assistant professor of chemistry in the Virginia Tech College of Science, is focusing on energy storage and conversion research.
How a crystalline sponge sheds water molecules
How does water leave a sponge? In a new study, scientists answer this question in detail for a porous, crystalline material made from metal and organic building blocks -- specifically, cobalt(II) sulfate heptahydrate, 5-aminoisophthalic acid and 4,4'-bipyridine.
Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.
Liquid water is more than just H2O molecules
Skoltech scientists in collaboration with researchers from the University of Stuttgart showed that the concentration of short-lived ions (H3O+ and OH-) in pure liquid water is much higher than that assumed to evaluate the pH, hence significantly changing our understanding of the dynamical structure of water.
'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.
Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.
Unique structural fluctuations at ice surface promote autoionization of water molecules
Hydrated protons at the surface of water ice are of fundamental importance in a variety of physicochemical phenomena on earth and in the universe.
Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.
The shape of water: What water molecules look like on the surface of materials
Water is a familiar substance that is present virtually everywhere.
The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.
More Water Molecules News and Water Molecules Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.