How the immune system reacts to hepatitis C viruses

April 24, 2020

If a virus penetrates a cell, the immune system reacts immediately and produces the signalling protein interferon. This protein activates hundreds of highly specialised defence mechanisms in all surrounding cells, which can inhibit various steps in the replication of the virus. Even though these so-called interferon-stimulated genes form the backbone of the innate immune system, the mechanisms of action of only a few of them are understood as yet.

The interferon-stimulated gene C19orf66 plays an important role in the defence against hepatitis C viruses. A research team at Ruhr-Universität Bochum (RUB) headed by Professor Eike Steinmann from the Department for Molecular and Medical Virology has now studied how C19orf66 works. The results show that C19orf66 disrupts the formation of the viral replication machinery.

The researchers published their study on 12 April 2020 in the Journal of Hepatology.

Hepatitis C patients produce more of the gene than healthy individuals

"In order to find out whether the C19orf66 gene is increasingly activated in samples from hepatitis C patients, we first examined liver tissue samples from infected and healthy people," explains PhD student Volker Kinast. The analysis showed that the production of C19orf66 is increased in hepatitis C patients.

"In the next step, we checked whether C19orf66 has an antiviral effect against hepatitis C viruses. We conducted experiments using cells that contained a lot of C19orf66 and cells that contained only a little of it. We then observed that the hepatitis C virus replicates much more slowly in cells that contain a lot of C19orf66 than in control cells," says Kinast.

Virological and molecular biological analyses

Additional experiments with cells in which the gene C19orf66 was completely switched off confirmed: C19orf66 inhibits the replication of the hepatitis C virus. In order to understand how C19orf66 does this, the researchers conducted numerous virological and molecular biological analyses.

The results show that C19orf66 disrupts the formation of the viral replication machinery. The hepatitis C virus has the ability to manipulate liver cells in such a way that an accumulation of membrane vesicles occurs within the cell. The virus uses these membrane vesicles as a scaffold to replicate effectively. C19orf66 disrupts and alters the structure of the scaffold and thus inhibits the replication of the virus.

Many people don't know that they are infected

An estimated 71 million people have a chronical hepatitis C infection, and a large percentage of them are not aware of this fact. Over the years, the virus damages the liver, resulting in severe liver disease that often requires liver transplantation.
-end-
Original publication

Volker Kinast et al.: C19orf66 is an interferon-induced inhibitor of HCV replication that restricts formation of the viral replication organelle, in: Journal of Hepatology, 2020, DOI: 10.1016/j.jhep.2020.03.047

Funding

The study was founded by the Helmholtz-Alberta-Initiative - Infectious Disease Research (HAI-IDR), the Swiss National Science Foundation (310030B_147089) and the German Research Foundation (TRR179, TP9).

Press contact

Volker Kinast
Molecular and Medical Virology
Faculty of Medicine
Ruhr-Universität Bochum
Phone: +49 234 32 26465
Email: volker.kinast@rub.de

Ruhr-University Bochum

Related Hepatitis Articles from Brightsurf:

Busting Up the Infection Cycle of Hepatitis B
Researchers at the University of Delaware have gained new understanding of the virus that causes hepatitis B and the ''spiky ball'' that encloses its genetic blueprint.

Liver cancer: Awareness of hepatitis D must be raised
Scientists from the University of Geneva (UNIGE) and the Geneva University Hospitals (HUG) have studied the most serious consequence of chronic hepatitis: hepatocellular carcinoma.

Hepatitis B: New therapeutic approach may help to cure chronic hepatitis B infection
Researchers at Helmholtz Zentrum München, Technical University of Munich (TUM) and the German Center for Infection Research (DZIF) have developed a novel therapeutic approach to cure chronic hepatitis B.

Anti-hepatitis medicine surprises
A new effective treatment of hepatitis C not only combats the virus, but is also effective against potentially fatal complications such as reduced liver functioning and cirrhosis.

Nanotechnology delivers hepatitis B vaccine
X-ray imaging shows that nanostructured silica acts as a protective vehicle to deliver intact antigen to the intestine so that it can trigger an immune response.

Checkmate for hepatitis B viruses in the liver
Researchers at Helmholtz Zentrum München and the Technical University of Munich, working in collaboration with researchers at the University Medical Center Hamburg-Eppendorf and the University Hospital Heidelberg, have for the first time succeeded in conquering a chronic infection with the hepatitis B virus in a mouse model.

How common is Hepatitis C infection in each US state?
Hepatitis C virus infection is a major cause of illness and death in the United States and injection drug use is likely fueling many new cases.

New strains of hepatitis C found in Africa
The largest population study of hepatitis C in Africa has found three new strains of the virus circulating in the general population in sub-Saharan Africa.

High stability of the hepatitis B virus
At room temperature, hepatitis B viruses (HBV) remain contagious for several weeks and they are even able to withstand temperatures of four degrees centigrade over the span of nine months.

Findings could lead to treatment of hepatitis B
Researchers have gained new insights into the virus that causes hepatitis B -- a life-threatening and incurable infection that afflicts more than 250 million people worldwide.

Read More: Hepatitis News and Hepatitis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.